Answer:
A I think
Explanation:
because what is the most frequency a because it has more frequency I think I'm not that sure
Explanation:
Let
are the number of turns in primary and secondary coil of the transformer such that,

A resistor R connected to the secondary dissipates a power 
For a transformer, 

...............(1)
The power dissipated through the secondary coil is :


.............(2)
Let
are the new number of turns in primary and secondary coil of the transformer such that,

New voltage is :

...............(3)
So, new power dissipated is 





So, the new power dissipated by the same resistor is 6400 watts. Hence, this is the required solution.
Answer:
Option (c) is correct.
Explanation:
The apparent change in the frequency of light due to the relative motion between the source and the observer is called Doppler's effect.
When the source is moving towards the observer which is at rest, the apparent frequency increases and if the observer is moving away the frequency of sound decreases.
It occurs for both light and sound.
So, to explain the blue shift of light in the universe is due to the Doppler's effect of light.
Answer:
4.3 * 10^28 kg
Explanation:
Given:
Period, T = 84s
Radius of satellite orbit, r = 8*10^6
Using the relation :
M = 4π²r³ / GT²
Where G = Gravitational constant, 6.67 * 10^-11
M = 4*π^2*(8*10^6)^3 / 6.67 * 10^-11 * 84^2
M = (20218.191872 * 10^18) / 47063.52 * 10^-11
M = 0.4295937 * 10^18 - (-11)
M = 0.4295937 * 10^29
M = 4.295937 * 10^28 kg
M = 4.3 * 10^28 kg
Mass of planet Nutron = 4.3 * 10^28 kg
Answer:
R1 = 5.13 Ω
Explanation:
From Ohm's law,
V = IR............... Equation 1
Where V = Voltage, I = current, R = resistance.
From the question,
I = 2 A, R = R1
Substitute into equation 1
V = 2R1................ Equation 2
When a resistance of 2.2Ω is added in series with R1,
assuming the voltage source remain constant
R = 2.2+R1, and I = 1.4 A
V = 1.4(2.2+R1)................. Equation 3
Substitute the value of V into equation 3
2R1 = 1.4(2.2+R1)
2R1 = 3.08+1.4R1
2R1-1.4R1 = 3.08
0.6R1 = 3.08
R1 = 3.08/0.6
R1 = 5.13 Ω