1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
15

The problem of perception is best characterized as

Physics
1 answer:
kicyunya [14]3 years ago
8 0

Answer:

The definition is defined in the clarification section down, and according to the particular circumstance.

Explanation:

  • The trouble with perception is that even though we generally perceive it if delusions and hallucinations become conceivable, therefore perception is unlikely.
  • The perception seems to be our issue: adapting to this culture requires giving up some vocabulary and ideas that are in the path of only possessing or taking up valuable space.
You might be interested in
Just need the answer
marin [14]

Answer:

1.  1, 2, 4 all show some form of refraction as the bending of a light ray when passing from one media to another.

Explanation:

Number 4 is the most accurate as it also shows some light being reflected and the bending of the refracted light ray in the correct direction for going from a medium of low refractive index (air) into a higher refractive index material (crown glass)

8 0
2 years ago
Suppose you pour 0.250 kg of 20.0°C water into a 0.600 kg aluminum pan off the stove with a temperature of 173°C. Assume that th
lapo4ka [179]

Answer:

T_f=5.0116^{\circ}C

Explanation:

Given:

  • mass of water, m_w=0.25\ kg
  • initial temperature of water, T_i_w=20^{\circ}C
  • initial temperature of pan, T_i_p=173^{\circ}C
  • mass of pan, m_p=0.6\ kg
  • mass of water evapourated, m_v=0.03\ kg
  • specific heat of water, c_w=4186\ J.kg^{-1}.K^{-1}
  • specific heat of aluminium pan, c_a=900\ J.kg^{-1}.K^{-1}
  • latent heat of vapourization, L=2256000\ J.kg^{-1}

<u>Using the equation of heat:</u>

<em>Here, initially certain mass of water is vapourised first and then the remaining mass of water comes in thermal equilibrium with the pan.</em>

m_p.c_a.(T_{ip}-T_f)=m_v.L+(m_w-m_v).c_w.(T_f-T_{iw})

0.6\times 900\times (173-T_f)=0.03\times 2256000+(0.25-0.03)\times 4186\times (T_f-20)

T_f=5.0116^{\circ}C

5 0
3 years ago
A 14.0 gauge copper wire of diameter 1.628 mm carries a current of 12.0 mA . A) What is the potential difference across a 1.80 m
Serga [27]

Answer: a) 139.4 μV; b) 129.6 μV

Explanation: In order to solve this problem we have to use the Ohm law given by:

V=R*I whre R= ρ *L/A  where ρ;L and A are the resistivity, length and cross section of teh wire.

Then we have:

for cooper R=1.71 *10^-8* 1.8/(0.001628)^2= 11.61 * 10^-3Ω

and for silver R= 1.58 *10^-8* 1.8/(0.001628)^2=10.80 * 10^-3Ω

Finalle we calculate the potential difference (V) for both wires:

Vcooper=11.62* 10^-3* 12 * 10^-3=139.410^-6 V

V silver= 10.80 10^-3* 12 * 10^-3=129.6 10^-6 V

8 0
3 years ago
Read 2 more answers
This question is related to inertia:
luda_lava [24]
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.
3 0
3 years ago
A spinning ice skater will speed up if he brings his arms close to his body. Which of the following statements explains this phe
xxMikexx [17]
A. Angular momentum is always conserved would be the correct answer.

This is because like linear momentum (mvmv), angular momentum (r×mvr×mv) is a conserved quantity, where rr is the vector from the center of rotation. For a skater holding a static pose, for each particle making up her body, the contribution in magnitude to the total angular momentum is given by mirivimirivi. Thus bringing in her arms reduces riri for those particles. In order to conserve angular momentum, there is then an increase in the angular velocity.

hope this helps!
7 0
3 years ago
Read 2 more answers
Other questions:
  • If we rotate on our axis does that count as a day
    7·1 answer
  • How many grams does 15.58 L of gasoline weigh? Gasoline has a density of 0.74 g/mL
    11·1 answer
  • Generators use a magnetic field of which of the following to produce an electric current?
    15·2 answers
  • Which of the following is the best definition of work?
    9·1 answer
  • 13. What's most intriguing about Titan's atmosphere?
    11·1 answer
  • Nancy rides her bike with a constant
    15·1 answer
  • How many regions does the deltoid muscle have
    5·2 answers
  • Limestone is an example of a chemical sedimentary rock. describe how limestone may form
    9·1 answer
  • A grasshopper leaps into the air at a 62° angle above the horizontal, and follows a parabolic arc in free fall after it leaves t
    15·1 answer
  • PLEASE HELP ASAPPPP!!!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!