Answer:
The answer is below
Step-by-step explanation:
Let a complex z = r(cos θ + isinθ), the nth root of the complex number is given as:

Given the complex number z = 81(cos(3π/8)+isin(3π/8)), the fourth root (i.e n = 4) is given as follows:
![z_{k=0}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(0)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(0)\pi}{4} ))=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})] \\z_{k=0}=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})]\\\\z_{k=1}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(1)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(1)\pi}{4} ))=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})] \\z_{k=1}=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})]\\\\](https://tex.z-dn.net/?f=z_%7Bk%3D0%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D0%7D%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D1%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D1%7D%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5C)
![z_{k=2}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(2)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(2)\pi}{4} ))=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})] \\z_{k=2}=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})]\\\\z_{k=3}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(3)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(3)\pi}{4} ))=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})] \\z_{k=3}=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})]](https://tex.z-dn.net/?f=z_%7Bk%3D2%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D2%7D%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D3%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D3%7D%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D)
Given side length "a" and angle "A", calculate the diagonals<span><span>
p = square root [( 2a^2 - 2a^2 cos(A) )]
</span>q = </span><span>square root [( 2a^2+ 2a^2 cos(A) )]</span>
http://www.calculatorsoup.com/calculators/geometry-plane/rhombus.php
side = 36
cos (32) = 0.84805
p = <span>small diagonal = </span>
<span>
<span>
<span>
19.8457652914
</span>
</span>
</span>
<span><span>
</span>
</span>
q =
large diagonal =
<span>
<span>
<span>
69.2108777578
</span>
</span>
</span>
Answer:
A: A coefficient of 0.98 shows a strong positive correlation with the data.
B: A graph comparing the number of seeds planted to the number of flowers in a garden.
Explanation:
A: Because, a correlation coefficient of 1 means there is a direct positive correlation correlation anyting over 0.5 shows a strong posotive correlation.
B: Any relationship where the first value directly causes the second is a causual relationship.
Answer:
-3+(-6) = -9
Step-by-step explanation:
a negative 3 plus another negative 6 is a negative 9. Is just like if you borrow $3 from your friend and borrow $9 from another friend. That means you own two of your friends a total of $9. This can be mathematically illustrate as: -3 + (-6)= -9
Do you have a specific equation I can help you with. I can explain them better with a problem to look at?