Answer:
A cell uses active transport because active transport uses energy going from high to low (against the concentraion gradient) while diffusion (passive transport which doesn't use energy) goes from low to high.
Explanation:
The answer is <span>The q allele will go up.
Let's assume that the population is in the Hardy-Weinberg equilibrium and there are only two alleles of some gene. </span>The Hardy-Weinberg principle can be expressed as p + q = 1 where p is the frequency of the p allele and q the frequency of q allele.
Let initial frequencies be:
p = 0.6
q = 0.4
p + q = 1
0.6 + 0.4 = 1
Now, after the environmental change, the frequency of the p allele has gone down, for example p = 0.3
So, p goes from 0.6 to 0.3.
The frequency of the q allele can be calculate using Hardy-Weinberg principle:
p + q = 1
q = 1 - p
q = 1 - 0.3
q = 0.7
Thus, q goes from 0.4 to 0.7.