Answer:
0.13% of customers spend more than 46 minutes
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What percentage of customers spend more than 46 minutes?
This is 1 subtracted by the pvalue of Z when X = 46. So



has a pvalue of 0.9987
1 - 0.9987 = 0.0013
0.13% of customers spend more than 46 minutes
7,14,21,28,35,42,49,56,63,70,77,84,91,98,105,112,119,126
18,36,54,72,90,108,126
So the first person to get both of them is the 126th person
(a+b)(a-b)=a^2 - b^2
so
<span>(4x-7)(4x+7) = 16x^2 - 49
answer
</span>16x^2 - 49
Answer:
30
Step-by-step explanation:
-75 + 105= 30
(Hope this helps can I pls have brainlist (crown) ☺️)