If f(x) is an anti-derivative of g(x), then g(x) is the derivative of f(x). Similarly, if g(x) is the anti-derivative of h(x), then h(x) must be the derivative of g(x). Therefore, h(x) must be the second derivative of f(x); this is the same as choice A.
I hope this helps.
5-3(1/2x+2)=-7
-3(1/2x+2)=-7-5
(1/2x+2)=4
1/2x=2
x=4
just to give u an idea
Answer:
Sabemos que:
L es el largo de la avenida.
En la primer etapa se asfalto la mitad, L/2, entonces lo que queda por asfaltar es:
L - L/2 = L/2.
En la segunda etapa se asfalto la quinta parte, L/5, entonces lo que queda por asfaltar es:
L/2 - L/5 = 5*L/10 - 2*L/10 = (3/10)*L
En la tercer etapa se asfalto la cuarta parte del total, L/4, entonces lo que queda por asfaltar es:
(3/10)*L - L/4 = 12*L/40 - 10L/40 = (2/40)*L
Y sabemos que este ultimo pedazo que queda por asfaltar es de 200m:
(2/40)*L = 200m
L = 200m*(40/2) = 4,000m
Answer:
<h3>The possibilities of length and width of the rectangle are </h3><h3>x=1, y=0.24;</h3><h3>x=0.5, y=0.48;</h3><h3>x=0.25, y=0.96;</h3><h3>x=2, y=0.12</h3>
Step-by-step explanation:
Given that the area is 0.24 square meter
The area of a rectangle is given by
square units
Let x be the length and y be the width.
Since the area is 0.24 square meter, we have the equation:
, with x and y measures in meters
If we want to know some possibilities of x and y, we can assume a value for one of them, and then calculate the other one using the equation.
Now choosing some values for "x", we have:
Put x = 1

∴ y = 0.24
Now put x = 0.5 we get
∴ y = 0.48
Put x = 0.25
∴ y = 0.96
Put x = 2

∴ y = 0.12
Answer: 0.3741
Step-by-step explanation:
Poison probability ;
P(x) = [U(^x) e(^-U)] ÷ x!
Where U = mean
Note: e = exponential symbol
Number of checks that year = 171
Number of days in a year = 365
U = 171/365 = 0.468
Average checks per day = 0.4685
Probability that at least one check was written per day is can be calculated by;
P(not 0) = 1 - P(0)
Therefore,
P(x) = [U(^x) e(^-U)] ÷ x!
P(0) = [ 0.4685^0 * e^-0.4685] ÷ 0!
P(0) = [ 1 * 0.6259] ÷ 1
P(0) = 0.6259
Therefore,
P(not 0) = 1 - 0.6259 = 0.3741