1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
3 years ago
7

How to solve 10 (g+5)=2(g+9)

Mathematics
1 answer:
Ghella [55]3 years ago
4 0

first multiply the outside numbers by both the numbers in the ()

10xg=10g       10x5=50    2xg=2g             2x9=18

then combine like terms

10g+50=2g+18

8g=32

then divide

g=4

You might be interested in
Solve for x please <br><br> 1/6x=10
ElenaW [278]

Answer:

x=60

Step-by-step explanation:

1/6x=10

multiply both sides by 6 to get x

x=60

6 0
3 years ago
Read 2 more answers
Consider the matrix shown below:
velikii [3]

Answer:

A)\ \ \ \ \left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]

Step-by-step explanation:

Given the matrix: \left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right],  it's inverse is calculated using the formula:

\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right]^{-1}=\frac{1}{det\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] }\left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right]

#Therefore, we calculate as;

\frac{1}{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right] }\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right] \\\\\\\\\#det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right] =1\\\\\\\\=\frac{1}{1}\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right] \\\\\\\\=\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]

Hence, the inverse of the matrix is \left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]

8 0
3 years ago
Use the laplace transform to solve the given initial-value problem. y' 5y = e4t, y(0) = 2
Basile [38]

The Laplace transform of the given initial-value problem

y' 5y = e^{4t}, y(0) = 2 is  mathematically given as

y(t)=\frac{1}{9} e^{4 t}+\frac{17}{9} e^{-5 t}

<h3>What is the Laplace transform of the given initial-value problem? y' 5y = e4t, y(0) = 2?</h3>

Generally, the equation for the problem is  mathematically given as

&\text { Sol:- } \quad y^{\prime}+s y=e^{4 t}, y(0)=2 \\\\&\text { Taking Laplace transform of (1) } \\\\&\quad L\left[y^{\prime}+5 y\right]=\left[\left[e^{4 t}\right]\right. \\\\&\Rightarrow \quad L\left[y^{\prime}\right]+5 L[y]=\frac{1}{s-4} \\\\&\Rightarrow \quad s y(s)-y(0)+5 y(s)=\frac{1}{s-4} \\\\&\Rightarrow \quad(s+5) y(s)=\frac{1}{s-4}+2 \\\\&\Rightarrow \quad y(s)=\frac{1}{s+5}\left[\frac{1}{s-4}+2\right]=\frac{2 s-7}{(s+5)(s-4)}\end{aligned}

\begin{aligned}&\text { Let } \frac{2 s-7}{(s+5)(s-4)}=\frac{a_{0}}{s-4}+\frac{a_{1}}{s+5} \\&\Rightarrow 2 s-7=a_{0}(s+s)+a_{1}(s-4)\end{aligned}

put $s=-s \Rightarrow a_{1}=\frac{17}{9}$

\begin{aligned}\text { put } s &=4 \Rightarrow a_{0}=\frac{1}{9} \\\Rightarrow \quad y(s) &=\frac{1}{9(s-4)}+\frac{17}{9(s+s)}\end{aligned}

In conclusion, Taking inverse Laplace tranoform

L^{-1}[y(s)]=\frac{1}{9} L^{-1}\left[\frac{1}{s-4}\right]+\frac{17}{9} L^{-1}\left[\frac{1}{s+5}\right]$ \\\\

y(t)=\frac{1}{9} e^{4 t}+\frac{17}{9} e^{-5 t}

Read more about Laplace tranoform

brainly.com/question/14487937

#SPJ4

6 0
2 years ago
For the function f(x) = –(x + 1)^2 + 4, identify the vertex, domain, and range.
olga_2 [115]
B; you can graph the function on a graphic calculator or use algebra find each of the desired aspects
5 0
3 years ago
Read 2 more answers
Use the slope formula to find the slope of the line that passes through the points (6,3) and (9,8).
Anni [7]
Correct answer is 5/3
8 0
2 years ago
Other questions:
  • 3.29 x 1000=3290<br> 329000 x 100=3290<br><br> Explain how they got the same answer<br> *help*
    9·1 answer
  • I need help pls i have to be done by 2
    6·1 answer
  • PLZ HELP ANSWER FAST
    11·1 answer
  • What is the answer. If you go into a detailed description I will mark you as branliest.
    13·1 answer
  • Quadratics solve x^2 -12X = -9. Write the answer in three decimal points,
    13·1 answer
  • Aline passes through the point (0, 1) and has a positive
    5·2 answers
  • Two different customers go to Vallarta to get stuff to make tacos. Customer A buys 2 packages of tortillas for $2 each, 2 pounds
    8·2 answers
  • HELLPP DUE BY 1pm PACIFIC HELLPP ASAP
    6·2 answers
  • If the scale factor is 1, then the size of the image will____?
    9·1 answer
  • F(x)=x² +6<br> Find an equation for the tangent line to the graph of f(x) = x² +6 at (5,31).<br> y=
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!