1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
3 years ago
11

Match the systems of linear equations with their solutions.

Mathematics
1 answer:
OleMash [197]3 years ago
6 0

Answer:

The solutions of linear equations in the procedure

Step-by-step explanation:

Part 1) we have

x+y=-1 ----> equation A

-6x+2y=14 ----> equation B

Solve the system by elimination

Multiply the equation A by 6 both sides

6*(x+y)=-1*6

6x+6y=-6 -----> equation C

Adds equation C and equation B

6x+6y=-6

-6x+2y=14

-------------------

6y+2y=-6+14

8y=8

y=1

Find the value of x

substitute in the equation A

x+y=-1 ------> x+1=-1 ------> x=-2

The solution is the point (-2,1)

Part 2) we have

-4x+y=-9 -----> equation A

5x+2y=3 ------> equation B

Solve the system by elimination

Multiply the equation A by -2 both sides

-2*(-4x+y)=-9*(-2)

8x-2y=18 ------> equation C

Adds equation B and equation C

5x+2y=3

8x-2y=18

----------------

5x+8x=3+18

13x=21

x=21/13

Find the value of y

substitute in the equation A

-4x+y=-9 ------> -4(21/13)+y=-9 ----> y=-9+84/13 -----> y=-33/13

The solution is the point (21/13,-33/13)

Part 3) we have

-x+2y=4 ------> equation A

-3x+6y=11 -----> equation B

Multiply the equation A by 3 both sides

3*(-x+2y)=4*3 ------> -3x+6y=12

so

Line A and Line B are parallel lines with different y-intercept

therefore

The system has no solution

Part 4) we have

x-2y=-5 -----> equation A

5x+3y=27 ----> equation B

Solve the system by elimination

Multiply the equation A by -5 both sides

-5*(x-2y)=-5*(-5)

-5x+10y=25 -----> equation C

Adds equation B and equation C

5x+3y=27

-5x+10y=25

-------------------

3y+10y=27+25

13y=52

y=4

Find the value of x

Substitute in the equation A

x-2y=-5 -----> x-2(4)=-5 -----> x=-5+8 ------> x=3

The solution is the point (3,4)

Part 5) we have

6x+3y=-6 ------> equation A

2x+y=-2 ------> equation B

Multiply the equation B by 3 both sides

3*(2x+y)=-2*3

6x+3y=6

so

Line A and Line B is the same line

therefore

The system has infinite solutions

Part 6) we have

-7x+y=1 ------> equation A

14x-7y=28 -----> equation B

Solve the system by elimination

Multiply the equation A by 7 both sides

7*(-7x+y)=1*7

-49x+7y=7 -----> equation C

Adds equation B and equation C

14x-7y=28

-49x+7y=7

------------------

14x-49x=28+7

-35x=35

x=-1

Find the value of y

substitute in the equation A

-7x+y=1  -----> -7(-1)+y=1 ----> y=1-7 ----> y=-6

The solution is the point (-1,-6)

You might be interested in
Starting from the same place, Miranda walks due west and Blake walks due east.
garri49 [273]
Going by 30 for east and -30 for west
3 0
3 years ago
Geometry pls help! im<br> beggingggg!
Fantom [35]

Answer: D; B

Step-by-step explanation: 1 and 4 are alternate exterior angles if you use process of elimination, all the other pairs are, alternate exterior, corresponding or same side interior angles. angles 1 and 4 are in between lines a and b when lines a and b have the transversal of c. with process of elimination, c is the only logical answer, as 1 and 4 both lie on that line. which leaves you with two answers. if you draw out lines a and b with a transversal of c and the lines b and e with the transversal of c, then B is the only logical answer. goodluck :) i just finished this unit :D

3 0
3 years ago
Can u answer these for me with the work shown
babymother [125]

Answer:

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}= \frac{(x+3)}{x}

\frac{3x^2 - 5x - 2}{x^3 - 2x^2} = \frac{3x + 1}{x^2}

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}=-\frac{5}{2x}

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x} = \frac{-(x-3)^2}{25}

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}= x +1

\frac{9x^2 + 3x}{6x^2} = \frac{3x + 1}{2x}

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x} = 3x

Step-by-step explanation:

Required

Simplify

Solving (1):

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}

Factorize the numerator and the denominator

\frac{x^2(x + 2) -9(x+2)}{x(x^2-x-6)}

Factor out x+2 at the numerator

\frac{(x^2 -9)(x+2)}{x(x^2-x-6)}

Express x^2 - 9 as difference of two squares

\frac{(x^2 -3^2)(x+2)}{x(x^2-x-6)}

\frac{(x -3)(x+3)(x+2)}{x(x^2-x-6)}

Expand the denominator

\frac{(x -3)(x+3)(x+2)}{x(x^2-3x+2x-6)}

Factorize

\frac{(x -3)(x+3)(x+2)}{x(x(x-3)+2(x-3))}

\frac{(x -3)(x+3)(x+2)}{x(x+2)(x-3)}

Cancel out same factors

\frac{(x+3)}{x}

Hence:

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}= \frac{(x+3)}{x}

Solving (2):

\frac{3x^2 - 5x - 2}{x^3 - 2x^2}

Expand the numerator and factorize the denominator

\frac{3x^2 - 6x + x - 2}{x^2(x- 2)}

Factorize the numerator

\frac{3x(x - 2) + 1(x - 2)}{x^2(x- 2)}

Factor out x - 2

\frac{(3x + 1)(x - 2)}{x^2(x- 2)}

Cancel out x - 2

\frac{3x + 1}{x^2}

Hence:

\frac{3x^2 - 5x - 2}{x^3 - 2x^2} = \frac{3x + 1}{x^2}

Solving (3):

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}

Express x^2 - 9 as difference of two squares

\frac{6 - 2x}{x^2 - 3^2} * \frac{15 + 5x}{4x}

Factorize all:

\frac{2(3 - x)}{(x- 3)(x+3)} * \frac{5(3 + x)}{2(2x)}

Cancel out x + 3 and 3 + x

\frac{2(3 - x)}{(x- 3)} * \frac{5}{2(2x)}

\frac{3 - x}{x- 3} * \frac{5}{2x}

Express 3 - x as -(x - 3)

\frac{-(x-3)}{x- 3} * \frac{5}{2x}\\

-1 * \frac{5}{2x}

-\frac{5}{2x}

Hence:

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}=-\frac{5}{2x}

Solving (4):

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x}

Expand x^2 - 6x + 9 and factorize 5x - 15

\frac{x^2 -3x -3x+ 9}{5(x - 3)} / \frac{5}{3-x}

Factorize

\frac{x(x -3) -3(x-3)}{5(x - 3)} / \frac{5}{3-x}

\frac{(x -3)(x-3)}{5(x - 3)} / \frac{5}{3-x}

Cancel out x - 3

\frac{(x -3)}{5} / \frac{5}{3-x}

Change / to *

\frac{(x -3)}{5} * \frac{3-x}{5}

Express 3 - x as -(x - 3)

\frac{(x -3)}{5} * \frac{-(x-3)}{5}

\frac{-(x-3)(x -3)}{5*5}

\frac{-(x-3)^2}{25}

Hence:

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x} = \frac{-(x-3)^2}{25}

Solving (5):

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}

Factorize the numerator and expand the denominator

\frac{x^2(x - 1) -1(x - 1)}{x^2 - x-x+1}

Factor out x - 1 at the numerator and factorize the denominator

\frac{(x^2 - 1)(x - 1)}{x(x -1)- 1(x-1)}

Express x^2 - 1 as difference of two squares and factor out x - 1 at the denominator

\frac{(x +1)(x-1)(x - 1)}{(x -1)(x-1)}

x +1

Hence:

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}= x +1

Solving (6):

\frac{9x^2 + 3x}{6x^2}

Factorize:

\frac{3x(3x + 1)}{3x(2x)}

Divide by 3x

\frac{3x + 1}{2x}

Hence:

\frac{9x^2 + 3x}{6x^2} = \frac{3x + 1}{2x}

Solving (7):

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x}

Change / to *

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} * \frac{x}{x-1}

Expand

\frac{x^2-2x-x+2}{4x} * \frac{12x^2}{x^2 - 2x} * \frac{x}{x-1}

Factorize

\frac{x(x-2)-1(x-2)}{4x} * \frac{12x^2}{x(x - 2)} * \frac{x}{x-1}

\frac{(x-1)(x-2)}{4x} * \frac{12x^2}{x(x - 2)} * \frac{x}{x-1}

Cancel out x - 2 and x - 1

\frac{1}{4x} * \frac{12x^2}{x} * \frac{x}{1}

Cancel out x

\frac{1}{4x} * \frac{12x^2}{1} * \frac{1}{1}

\frac{12x^2}{4x}

3x

Hence:

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x} = 3x

8 0
3 years ago
Write the polynomial in standard form. Then classify
Bad White [126]
Standard form:6x^3+x^2-6x+1
The degree is 3
3 0
2 years ago
Franko's pizza is selling their pizzas 35% cheaper than usual. if a pizza normally costs $12.00, how much is it now?
Mariana [72]
X = $12.00 * (1 - 0.35)
x = $12.00 * 0.65
x = $ 7.80
5 0
3 years ago
Other questions:
  • benito read 14 books in 3 months, which was 35% of the number of books he had signed up to read during the school year .how many
    10·1 answer
  • Which pickle jar deal has the best price per ounce? $3.45 or 14 oz $4.35 for 16 oz $3.29 for 12 oz $4.25 for 15 oz
    9·1 answer
  • a bottle of juice holds 3/8 gallon when it is full. if 1/3 of the juice has been poured out, how much juice is left in the bottl
    13·1 answer
  • Which phrase describes an unknown or changeable quantity/
    11·1 answer
  • What is the interquartile range of the data shown in the box plot? Please answer fast
    7·1 answer
  • F(x)=3x−4g(x)=−x2+2x−5h(x)=2x2+1j(x)=6x2−8xk(x)=3x2−x+7 Calculate (fh)(x).
    14·1 answer
  • Suppose that 22 inches of wire costs 88 cents.
    8·1 answer
  • The triangles are similar by:
    12·2 answers
  • -2 (1 - 4x)=3x +8 is
    8·1 answer
  • I’m in 7th grade and forgot how to add and subtract whole numbers and fractions, can someone explain it to me? Example: 13 2/3 -
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!