The volume of O₂ produced: 84.6 L
<h3>Further explanation</h3>
Given
7.93 mol of dinitrogen pentoxide
T = 48 + 273 = 321 K
P = 125 kPa = 1,23365 atm
Required
Volume of O₂
Solution
Decomposition reaction of dinitrogen pentoxide
2N₂O₅(g)→4NO₂(g)+O₂ (g)
From the equation, mol ratio N₂O₅ : O₂ = 2 : 1, so mol O₂ :
= 0.5 x mol N₂O₅
= 0.5 x 7.93
= 3.965 moles
The volume of O₂ :

Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s
Answer:
two examples are blood and soapy water.
Explanation:
Answer:
it is Calcium (Ca)
4th period, 2nd group, 2 valence electrons
Answer:
1. mixture
2. Homogenous
Explanation:
Copper II chloride is a compound because it consists of elements that are chemically combined together. When a solute in this case, copper II chloride is mixed with water- a solvent, the result is a homogenous mixture.
Homogenous substances are formed when a solute and a solvent combine, resulting in a mixture with uniform properties. Mixtures can be separated using relevant separation techniques.