The students have conducted an experiment to check their hypothesis on the thermal conductivity of two metals; Aluminum and steel. The experimental observations have been noted, and the next step based on the scientific procedure is to analyze the data.
Analysis of data suggests that; since the length of wax after 10 min is lower in Al than steel, aluminum is a better thermal conductor.
Ans B) Analyze the data
Answer:
76,6 kg
Explanation:
A kg it's equal to 1x10^3 grams
A Gigagrams it's equal to 1x10^9 grams
Knowing this, a kg it's equal to 1x10^6 gigagrams
![7,66*10^{-5}[gigagram]*\frac{1*10^6 [kg]}{1 [gigagram]}= 76.6 [kg]](https://tex.z-dn.net/?f=7%2C66%2A10%5E%7B-5%7D%5Bgigagram%5D%2A%5Cfrac%7B1%2A10%5E6%20%5Bkg%5D%7D%7B1%20%5Bgigagram%5D%7D%3D%2076.6%20%5Bkg%5D)
Answer:
The fundamental principle involves the formation of equilibrium and separation into distillate and bottoms governed by the equilibrium composition curve , number of stages and the purity with which the distillate is required.
Explanation:
Distillation is a type of the separation process by physical means of a mixture on basis of its difference in boiling point or vapor pressure .
Where we can just heat the mixture and separate out the components i.e the component with lower boiling point will form vapor easily and can be later condensed whereas the component with higher boiling point will remain as residue.
In case of a distillation column the same principle is applied at different stages to separate multiple components .The stages are known as trays or plates . In general , there is a certain liquid on each of the plate, and the arrangements are made for the ascending vapors to pass through the liquid and make contact with it . The fundamental principle involves the formation of equilibrium and separation into distillate and bottoms governed by the equilibrium composition curve , number of stages and the purity with which the distillate is required.
No. of moles = mass / molar mass
= 100/35.5
From the coefficients of the equation, we know that for every 3 moles of water consumed, 1 mole of diphosphorus trioxide is consumed.
This means we need to find the mass of 0.75 moles of diphosphorus trioxide.
- The atomic mass of phosphorous is 30.973761998 g/mol.
- The atomic mass of oxygen is 15.9994 g/mol.
So, the formula mass of diphosphorus trioxide is:
- 2(30.973761998)+3(15.9994)=109.945723996 g/mol.
Thus, 0.75 moles have a mass of:
- 0.75(109.945723996), which is about 82.5 g (to 3 sf)