Answer:
56°
Explanation:
First calculate 

The interplanar spacing can be calculated from:

The diffraction angle is determined from:

Solve for 

The diffraction angle is:

Answer:
The answer is
<h2>112.912 kPa</h2>
Explanation:
The new pressure can be found by using the formula for Boyle's law which is

Since we are finding the new pressure

404.6 kPa = 404600 Pa
From the question we have

We have the final answer as
<h3>112.912 kPa</h3>
Hope this helps you
Answer:
The concentration of species in 500 mL of a 2.104 M solution of sodium sulfate is 4.208 M sodium ion and 2.104 M sulfate ion. (option E)
Explanation:
Step 1: Data given
Volume = 500 mL = 0.500 L
The concentration sodium sulfate = 2.104 M
Step 2: The equation
Na2SO4 → 2Na+ + SO4^2-
For 1 mol Na2SO4 we have 2 moles sodium ion (Na+) and 1 mol sulfate ion (SO4^2-)
Step 3: Calculate the concentration of the ions
[Na+] = 2*2.104 M = 4.208 M
[SO4^2-] = 1*2.104 M = 2.104 M
The concentration of species in 500 mL of a 2.104 M solution of sodium sulfate is 4.208 M sodium ion and 2.104 M sulfate ion. (option E)
I’m pretty sure it’s sulphur dioxide
Answer:

Explanation:
We know we will need an equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 261.34 233.39
Ba(NO₃)₂ + Na₂SO₄ ⟶ BaSO₄ + 2NaNO₃
m/g: 75.00
1. Moles of Ba(NO₃)₂

2. Moles of BaSO₄
The molar ratio is (1 mol BaSO₄/1 mol Ba(NO₃)₂

3. Mass of BaSO₄
