1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nexus9112 [7]
3 years ago
11

7. A baseball has a radius of 2 inches. What is the volume in cubic inches of

Mathematics
1 answer:
Sever21 [200]3 years ago
8 0

Answer:

33.49

Step-by-step explanation:

Volume of a sphere formula= 4/3πr^3

Radius= 2

Plug the radius into the formula to get your answer.

You might be interested in
Please help!!! ill give brainliest
yawa3891 [41]

Answer:

Step-by-step explanation:

divide the number then add on

7 0
3 years ago
Read 2 more answers
Use stoke's theorem to evaluate∬m(∇×f)⋅ds where m is the hemisphere x^2+y^2+z^2=9, x≥0, with the normal in the direction of the
ludmilkaskok [199]
By Stokes' theorem,

\displaystyle\int_{\partial\mathcal M}\mathbf f\cdot\mathrm d\mathbf r=\iint_{\mathcal M}\nabla\times\mathbf f\cdot\mathrm d\mathbf S

where \mathcal C is the circular boundary of the hemisphere \mathcal M in the y-z plane. We can parameterize the boundary via the "standard" choice of polar coordinates, setting

\mathbf r(t)=\langle 0,3\cos t,3\sin t\rangle

where 0\le t\le2\pi. Then the line integral is

\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=\int_{t=0}^{t=2\pi}\mathbf f(x(t),y(t),z(t))\cdot\dfrac{\mathrm d}{\mathrm dt}\langle x(t),y(t),z(t)\rangle\,\mathrm dt
=\displaystyle\int_0^{2\pi}\langle0,0,3\cos t\rangle\cdot\langle0,-3\sin t,3\cos t\rangle\,\mathrm dt=9\int_0^{2\pi}\cos^2t\,\mathrm dt=9\pi

We can check this result by evaluating the equivalent surface integral. We have

\nabla\times\mathbf f=\langle1,0,0\rangle

and we can parameterize \mathcal M by

\mathbf s(u,v)=\langle3\cos v,3\cos u\sin v,3\sin u\sin v\rangle

so that

\mathrm d\mathbf S=(\mathbf s_v\times\mathbf s_u)\,\mathrm du\,\mathrm dv=\langle9\cos v\sin v,9\cos u\sin^2v,9\sin u\sin^2v\rangle\,\mathrm du\,\mathrm dv

where 0\le v\le\dfrac\pi2 and 0\le u\le2\pi. Then,

\displaystyle\iint_{\mathcal M}\nabla\times\mathbf f\cdot\mathrm d\mathbf S=\int_{v=0}^{v=\pi/2}\int_{u=0}^{u=2\pi}9\cos v\sin v\,\mathrm du\,\mathrm dv=9\pi

as expected.
7 0
3 years ago
Es5sdrdrrufrftfutyttf
Mrac [35]

Answer:

coordinate plane,

5 0
3 years ago
Read 2 more answers
How to find a circumference of a circle​
Dahasolnce [82]

Answer:

2πr is the formula to calculate

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
** PLEASE HELP!!! HURRY!!! 30 POINTS AND BRAINLIEST FOR QUICKEST CORRECT ANSWER!!!!!!!*****
zzz [600]
This is Hard but I tried Hope this Helps.
22-2+20 = 0x=12.2        |y
                                      |
                                      | 
                  __________|__________x_
                                      |
                      20.5                | 
               2             10         |
               1                       |
m=Months 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
7 0
4 years ago
Other questions:
  • if the scale factor of a scale drawing is greater than one, the scale drawing is larger than the actual object. true or false???
    8·1 answer
  • Consider the following pair of equations:
    7·1 answer
  • 2-(3-a)=-4 please help me i did not understand the question
    10·1 answer
  • What are the steps to solving K + 8\5 = 1
    8·2 answers
  • What is the sample space for the suits of a standard 52-card deck of cards?​
    13·1 answer
  • What is the Radical of 125???????
    9·1 answer
  • kelsey goes cliff diving into the ocean. Her height as a function of time can be modeled by the function h(t)=-16t^2+480, where
    13·1 answer
  • Help me plsssssssssssssssss​
    5·1 answer
  • A furniture store book shelf was priced at
    12·2 answers
  • Does anyone know the answer to this ?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!