0.448 moles of ions will form when a 42.66-gram sample of magnesium chloride is dissolved in water (option A).
<h3>How to calculate number of moles?</h3>
According to this question, when magnesium chloride (MgCl2) dissolves in water, it dissociates into magnesium ions and chloride ions as follows:
MgCl2(aq) ⟶ Mg2+(aq) + Cl−(aq)
However, if a 42.66-gram sample of magnesium chloride is dissolved in water, this means that 42.66g/molecular mass of MgCl2 will be the number of moles of the ionic products.
molecular mass of MgCl2 = 95.3g/mol
moles = 42.66g ÷ 95.3g/mol = 0.448mol
Therefore, 0.448 moles of ions will form when a 42.66-gram sample of magnesium chloride is dissolved in water.
Learn more about moles at: brainly.com/question/26416088
#SPJ1
The precaution to be taken while measuring the temperature of a liquid in a beaker is applying proper heat balance and taking all the required precautions.
- A beaker with an open top contains a sample of liquid. It exposes this sample to light.
- That liquid absorbs the light energy, turning it into heat energy. As a result, the liquid becomes warmer and evaporation is accelerated. As a result, there is less liquid in the beaker.
- Since it is well known that the surface temperature of a liquid, along with air movement above the liquid surface, is one of the dominant factors affecting evaporation, I want to measure the evaporation rate as a function of surface temperature.
- This can be done by applying a heat balance.
Learn more about heat balance at:
brainly.com/question/1292905
#SPJ9
Answer:
X has 9 Electrons, 9 Protons and 10 Neutrons
X is Fluorine
Explanation:
19 in X is Nucleon number
So, if you minus 19 by 9 down there (which is proton number) you'll get 10 (Neutron number).
Now, Proton = Electron. That's why Electron is 9 too. I figured that X is Fluorine bcuz it has 9 Electrons. If you venture around in the periodic table, fluorine is the ninth element innit.
hope this helps ya \(^o^)/
Answer:
0.55 mol Au₂S₃
Explanation:
Normally, we would need a balanced equation with masses, moles, and molar masses, but we can get by with a partial equation, if the S atoms are balanced.
1. Gather all the information in one place:
M_r: 34.08
Au₂S₃ + … ⟶ 3H₂S + …
m/g: 56
2. Calculate the moles of H₂S
Moles of H₂S = 56 g H₂S × (34.08 g H₂S/1 mol H₂S)
= 1.64 mol H₂S
3. Calculate the moles of Au₂S₃
The molar ratio is 1 mol Au₂S₃/3 mol H₂S.
Moles of Au₂S₃ = 1.64 mol H₂S × (1 mol Au₂S₃/3 mol H₂S)
= 0.55 mol Au₂S₃