Answer:
year 1 is 5.5%
year 2 is 7.5%
year 3 is 10.2%
Explanation:
since,
length of the transect covered in seaweed / total lenth of transect x 100
then,
0.55 / 10.0 x 100 = 5.5
and
0.75 / 10.0 x 100 = 7.5
and
1.02 / 10.0 x 100 = 10.2
you could also just move the decimal to the right once
:)
SOLVENT- A substance (usually a liquid) capable of dissolving one or more pure substances. SOLUTE- Solid, liquid or gas that is dissolved in a solvent. SOLUTION- A homogeneous (looks the same throughout) mixture of a solvent and one or more solutes. AQUEOUS SOLUTION- Solution in which water is the solvent.
Answer
it raises the boiling point substance is dissolved in water
Answer:
1.
2.
3.The electron affinity of
is zero.
4.
Explanation:
1.
<u>Electron affinity:</u>
It is defined as the amount of energy change when an electron is added to atom in the gaseous phase.
The electron affinity of
is as follows.

2.
<u>Ionization energy</u>:
Amount of energy required to removal of an electron from an isolated gaseous atom.
The third ionization energy of Titanium is as follows.

3.
The electronic configuration of Mg: 
By the removal of two electrons from a magnesium element we get
ion.
has inert gas configuration i.e,
Hence, it does not require more electrons to get stability.
Therefore,the electron affinity of
is zero.
4.
The ionization energy of
is follows.

I think that type of rock is call Igneous rock because the igneous rock is molten rock from volcanoes.
Answer:
%age Yield = 51.45 %
Solution:
Step 1: Convert Kg into g
68.5 Kg CO = 68500 g CO
8.60 Kg H₂ = 8600 g
Step 2: Find out Limiting reactant;
The Balance Chemical Equation is as follow;
CO + 2 H₂ → CH₃OH
According to Equation,
28 g (1 mol) CO reacts with = 4 g (2 mol) of H₂
So,
68500 g CO will react with = X g of H₂
Solving for X,
X = (68500 g × 4 g) ÷ 28 g
X = 9785 g of H₂
It shows 9785 g H₂ is required to react with 68500 g of CO but we are provided with 8600 g of H₂ which is less than required. Therefore, H₂ is provided in less amount hence, it is a Limiting reagent and will control the yield of products.
Step 3: Calculate Theoretical Yield
According to equation,
4 g (2 mol) H₂ reacts to produce = 32 g (1 mol) Methanol
So,
8600 g H₂ will produce = X g of CH₃OH
Solving for X,
X = (8600 g × 32 g) ÷ 4 g
X = 68800 g of CH₃OH
Step 4: Calculate %age Yield
%age Yield = Actual Yield ÷ Theoretical Yield × 100
Putting Values,
%age Yield = 3.54 × 10⁴ g ÷ 68800 g × 100
%age Yield = 51.45 %