Answer:
it wont be because the hand brake would be on
Answer:
The tendency of an object to resist changes in its state of motion varies with mass. Mass is that quantity that is solely dependent upon the inertia of an object. The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.
Explanation:
Answer:
The increase in potential energy of the ball is 115.82 J
Explanation:
Conceptual analysis
Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:
U = m × g × h
U: Potential Energy in Joules (J)
m: mass in kg
g: acceleration due to gravity in m/s²
h: height in m
Equivalences
1 kg = 1000 g
1 ft = 0.3048 m
1 N = 1 (kg×m)/s²
1 J = N × m
Known data




Problem development
ΔU: Potential energy change
ΔU = U₂ - U₁
U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁
U₂ - U₁ = mₓg(h₂ - h₁)

The increase in potential energy of the ball is 115.82 J
Answer:
We can use 2 g H = v2^2 - v1^2 or
v2^2 = 2 g H + v1^2
Since 88 ft/sec = 60mph we have 30 mph = 44 ft/sec
The object will return with the same speed that it had initially so the object
starts out with a downward speed of 44 ft/sec
Then v2^2 = 2 * 32 ft/sec^2 * 160 ft + 44 (ft/sec)^2
v2^2 = (2 * 32 * 160 + 44^2) ft^2 / sec^2 = 12180 ft^2/sec^2
v2 = 110 ft/sec
Answer:
The mass of the products and reactants are the same on both sides of the equation.
The number of atoms of products and reactants are equal and hence it proves the law of conservation of mass.
.