Answer:
The material cost for making one ton of the brass sample that I have is $8149.04.
Explanation:
Density of copper = 8.96 g/cm^3 = 8.96×10^-3 kg/cm^3
Price of copper = $6.13/kg
Price of copper per volume = 8.96×10^-3 kg/cm^3 × $6.13/kg = $0.0549/cm^3
Density of zinc = 7.14 g/cm^3 = 7.14×10^-3 kg/cm^3
Price of zinc = $1.8/kg
Price of zinc per volume = 7.14×10^-3 kg/cm^3 × $1.8/kg = $0.0129/cm^3
Price of brass per volume = 0.0549 + 0.0129 = $0.0678/cm^3
Density of brass I have is 8.32 g/cm^3 = 8.32 g/cm^3 × 1 kg/1000 g × 1 ton/1000 kg = 8.32×10^-6 ton/cm^3
Price = $0.0678/cm^3 ÷ 8.32×10^-6 ton/cm^3 = $8149.04/ton
Answer:
D
Explanation:
I’m pretty sure it’s correct but I don’t really know. Just trying to pass science
Answer:
The magnitude of the flux of electric field through a square of surface area is zero.
Explanation:

It is given that square box is parallel to yz-plane which has normal vector perpendicular to plane in x-direction. Angle between normal vector of area and electric field is 90°. Substituting in (1)

Answer: A, C and D
Explanation:
Interference occurs when two waves superimpose to form a wave having a smaller or larger amplitude.
Constructive interference is said to occur when two waves superimpose to produce a wave having larger amplitude. It occurs for the waves having phase difference of multiple of 2π. On the other hand, destructive interference occurs for the waves having phase difference π, 3π, ..and so on.
In the given picture, the bright regions represent constructive interference where as the dark ones between them represent destructive interference. Thus, the correct letters representing constructive interference are: A, C and D.
A star’s death also depends on its mass. The most massive stars
quickly exhaust their fuel supply and explode in core-collapse
supernovae, some of the most energetic explosions in the universe. A
supernova’s radiation can easily (if only briefly) outshine the rest of
its host galaxy. The remnant stellar core will form a neutron star
or a black hole, depending on how much mass remains. If the core
contains between 1.44 and 3 solar masses, that mass will crush into a
volume just 10 to 15 miles wide before a quantum mechanical effect known
as neutron degeneracy pressure prevents total collapse. The
exact upper limit on a neutron star mass isn’t known, but around 3 solar
masses, not even neutron degeneracy pressure can combat gravity’s
inward crush, and the core collapses to form a black hole.