Making a drawing of the system, we will have two forces which are tension and the weight of the object. Balancing the forces present, we do as follows:
T = W
W = 30 N
Therefore, weight is equal to 30 N. Hope this answers the question. Have a nice day. Feel free to ask more questions.
His weight depends on where he is, because
Weight = (mass) x (gravity in the place where the mass is) .
For example:
-- If this man is on Mars, his weight is (110 kg) x (3.7 m/s²) = 408 Newtons
-- If he is on the Moon, his weight is (110 kg) x (1.6 m/s²) = 176 Newtons
-- If he is on Earth, his weight is (110 kg) x (9.8 m/s²) = 1,078 Newtons
-- If he is in a spacecraft coasting from one to another, his weight is zero.
Answer:
<em>The y component of his displacement is 11.22 meters</em>
Explanation:
<u>Components of the displacement</u>
The displacement is a vector because it has a magnitude and a direction. Let's suppose a displacement has a magnitude r and a direction θ, measured with respect to the positive x-direction. The horizontal component of the displacement is calculated by:

The vertical component is calculated by:

The hiker has a displacement with magnitude r = 20.51 m at an angle of 33.16 degrees. Substituting in the above equation:


The y component of his displacement is 11.22 meters
Abyssal plain
Abyssal fan
Archipelago
Atoll
Arch