Answer:
a. 9.2
b. 4.4
c. 6.3
Explanation:
In order to calculate the pH of each solution, we will use the definition of pH.
pH = -log [H⁺]
(a) [H⁺] = 5.4 × 10⁻¹⁰ M
pH = -log [H⁺] = -log 5.4 × 10⁻¹⁰ = 9.2
Since pH > 7, the solution is basic.
(b) [H⁺] = 4.3 × 10⁻⁵ M
pH = -log [H⁺] = -log 4.3 × 10⁻⁵ = 4.4
Since pH < 7, the solution is acid.
(c) [H⁺] = 5.4 × 10⁻⁷ M
pH = -log [H⁺] = -log 5.4 × 10⁻⁷ = 6.3
Since pH < 7, the solution is acid.
Answer:
Kc =![\frac{[8.326x10-3]^{1} }{[1.113x10-2]^{1}[1.490x10-2]^{1} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B8.326x10-3%5D%5E%7B1%7D%20%7D%7B%5B1.113x10-2%5D%5E%7B1%7D%5B1.490x10-2%5D%5E%7B1%7D%20%20%7D)
Kc = 50.2059
Explanation:
1. Balance the equation
2. Use the Kc formula
Remember that pure substances, like H2 are not included on the Kc formula
The second option only.
<h3>Explanation</h3>
A base neutralizes an acid when the two reacts to produce water and a salt.
Sulfuric acid H₂SO₄ is the acid here. There are more than one classes of bases that can neutralize H₂SO₄. Among the options, there are:
Metal hydroxides
Metal hydroxides react with sulfuric acid to produce water and the sulfate salt of the metal.
.
The formula for calcium sulfate
in option A is spelled incorrectly. Why? The charge on each calcium
is +2. The charge on each sulfate ion
is -2. Unlike
ions, it takes only one
ion to balance the charge on each
ion. As a result,
and
ions in calcium sulfate exist on a 1:1 ratio.
.
Ammonia, NH₃
Ammonia NH₃ can also act as a base and neutralize acids. NH₃ exists as NH₄OH in water:
.
The ion
acts like a metal cation. Similarly to the metal hydroxides, NH₃ (or NH₄OH) neutralizes H₂SO₄ to produce water and a salt:
.
The formula of the salt (NH₄)₂SO₄ in the fourth option spelled the ammonium ion incorrectly.
As part of the salt (NH₄)₂SO₄, the ammonium ion NH₄⁺ is one of the products of this reaction and can't neutralize H₂SO₄ any further.
The liver cells produce proteins to avoid blood clotting. They also break down old or damaged blood cells.