Answer:
38.47 m
Explanation:
To find the height of the building, we will use the following equation

Where yf is the final height, yi is the initial height, viy is the initial vertical velocity, t is the time, and a is the acceleration due to gravity.
If the brick is in flight for 3.1 s, we can say that when t = 3.1s, yf = 0 m. So, replacing
viy = (16 m/s)sin(10) = 2.78 m/s
a = -9.8 m/s²
we get

Solving for yi

Therefore, the height of the building is 38.48 m
Well if the rock doesn't move, then there is no amount of work done. There is no work done on an object if a force is applied to the object but it DOES NOT change its position, in this case is the rock.
The answer is 60 km. I hope it helps i dont know if this is right or wrong.
Answer:
Check the explanation
Explanation:
This is the step by step explanation to the above question:
![v_i = v [ f_L *(v - v_b) - f_s*(v + v_b)] / [f_L * (v - v_b) + f_s*(v +v_b)]](https://tex.z-dn.net/?f=v_i%20%3D%20v%20%5B%20f_L%20%2A%28v%20-%20v_b%29%20-%20f_s%2A%28v%20%2B%20v_b%29%5D%20%2F%20%5Bf_L%20%2A%20%28v%20-%20v_b%29%20%2B%20f_s%2A%28v%20%2Bv_b%29%5D)
= v * (83.1 * (v-4.3) - 80.7 ( v+4.3))/ [83.1 *(v - 4.3) + 80.7*(v + 4.3)]
v = 344 m/s
vi = 344 * ( 83.1* (344-4.3) - 80.7*(344+4.3) ) / (83.1 *(344 - 4.3) + 80.7*(344 + 4.3))
= 0.74 m/s