By definition, the refractive index is
n = c/v
where c = 3 x 10⁸ m/s, the speed of light in vacuum
v = the speed of light in the medium (the liquid).
The frequency of the light source is
f = (3 x 10⁸ m/s)/(495 x 10⁻⁹ m) = 6.0606 x 10¹⁴ Hz
Because the wavelength in the liquid is 434 nm = 434 x 10⁻⁹ m,
v = (6.0606 x 10¹⁴ 1/s)*(434 x 10⁻⁹ m) = 2.6303 x 10⁸ m/s
The refractive index is (3 x 10⁸)/(2.6303 x 10⁸) = 1.1406
Answer: a. 1.14
Work = force × distance × cos(angle)
work = (25)(50)(cos (40))
work = 957.56 Joules
= 9.6x10^2 Joules
Weight = Mass of object * Gravity of experimented place
Here, m = 68 Kg
g' = 11.15 m/s²
Substitute their values,
w = 68 * 11.15
w = 758.2 N
In short, Your Answer would be 758.2 Newtons
Hope this helps!
B. their distances from the sun.
Explanation:
Absolute Magnitude:
Astronomers defines the absolute magnitude of a stars brightness in terms of how bright a star appears from a standard distance of 10 parsecs. Parsec is a unit of distance in astronomy. 10 parsecs is equal to 32.6 light years.
Apparent Magnitude:
Apparent magnitude of a star refers to how bright the star appears at its distance from the Earth.
If two stars have the same absolute magnitude but their apparent magnitude differs, the reason is that the distance of both the stars from the Earth varies. Hence their brightness differs when measured from Earth. The farther a star is from the Earth, the fainter its brightness.
Keywords: star, brightness, parsec, light years, apparent magnitude, absolute magnitude
Learn more about stars and absolute magnitude from:
brainly.com/question/13002384
brainly.com/question/1384449
#learnwithBrainly
Answer:
v = 8.65 m/s
Explanation:
Given that,
Distance covered by the doge, d = 45 m
Time taken, t = 5.2 s
We need to find its average speed. The total distance covered divided by the total time taken is called the average speed of an object. So,

So, the average speed is 8.65 m/s.