Answer:
It is positive and smaller in magnitude than the initial acceleration.
Explanation:
We know that acceleration is defined as the change of velocity in a given time.
We see that the time interval is equal to 30 seconds (70 - 40). In this interval we also see that the velocity increases from 245 to 250 (m/s) approximately. Therefore the acceleration is positive.
With respect to the magnitude we can say that it is smaller than at the beginning since the change of velocities is smaller with respect to the change of velocities at the beginning.
A wave with a period of 1⁄3 second has a frequency of D. 3 Hz. To
calculate this we will use the formula that represents the correlation
between a frequency (f) and a time period (T): T = 1/f. Or: f = 1/T. The
unit for the time period is second "s" while the unit for frequency is
Hertz "Hz" (=1/s). We know that T = 1/3 s. That means that f = 1/(1/3s) =
3 1/s = 3 Hz.
Answer:They come in different kinds, called elements, but each atom shares certain characteristics in common. All atoms have a dense central core called the atomic nucleus. Forming the nucleus are two kinds of particles: protons, which have a positive electrical charge, and neutrons, which have no charge
Explanation:
Answer:
The work required is -515,872.5 J
Explanation:
Work is defined in physics as the force that is applied to a body to move it from one point to another.
The total work W done on an object to move from one position A to another B is equal to the change in the kinetic energy of the object. That is, work is also defined as the change in the kinetic energy of an object.
Kinetic energy (Ec) depends on the mass and speed of the body. This energy is calculated by the expression:

where kinetic energy is measured in Joules (J), mass in kilograms (kg), and velocity in meters per second (m/s).
The work (W) of this force is equal to the difference between the final value and the initial value of the kinetic energy of the particle:


In this case:
- W=?
- m= 2,145 kg
- v2= 12

- v1= 25

Replacing:

W= -515,872.5 J
<u><em>The work required is -515,872.5 J</em></u>