1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
3 years ago
12

Se quiere construir un muro de 4 m de alto, 12 m de largo y 10 cm de espesor. ¿Cuántos ladrillos de 8 cm de alto, 20 cm de largo

y 10 cm de espesor se requieren?
Mathematics
1 answer:
Llana [10]3 years ago
4 0

Answer:

3000

Step-by-step explanation:

Let's start by finding the volume of the wall. The volumen of the wall can be considered as the volume of a rectangular prism. The volume of a rectangular prism is given by:

V_w=w*l*h\\\\Where:\\\\w=Width=10cm=0.1m\\l=Length=12m\\h=Height=4m

So the volume of the wall is:

V_w=0.1*12*4=4.8m^3

Now, we can find the volume of the brick using the same method since a brick can be considered as a rectangular prism as well:

V_b=w*l*h\\\\For\hspace{3}the\hspace{3}brick\\\\w=10cm=0.1m\\l=20cm=0.2m\\h=8cm=0.08m

Hence:

V_b=(0.1)*(0.2)*(0.08)=0.0016m^3

In order to know how many bricks are required to build the wall, we just need to fill the wall volume with the number of bricks of this volume. So:

V_w=nV_b\\\\Where\\\\n=Number\hspace{3}of\hspace{3}bricks

Solving for n:

n=\frac{V_w}{V_b} =\frac{4.8}{0.0016} =3000

Therefore, we need 3000 bricks to build that wall.

Translation:

Comencemos por encontrar el volumen del muro. El volumen del muro puede considerarse como el volumen de un prisma rectangular. El volumen de un prisma rectangular viene dado por:

V_w=w*l*h\\\\Donde:\\\\w=Espesor=10cm=0.1m\\l=Largo=12m\\h=Alto=4m

Entonces el volumen del muro es:

V_w=0.1*12*4=4.8m^3

Ahora, podemos encontrar el volumen del ladrillo utilizando el mismo método, ya que un ladrillo también puede considerarse como un prisma rectangular:

V_b=w*l*h\\\\Para\hspace{3}el\hspace{3}ladrillo\\\\w=10cm=0.1m\\l=20cm=0.2m\\h=8cm=0.08m

Por lo tanto:

V_b=(0.1)*(0.2)*(0.08)=0.0016m^3

Para saber cuántos ladrillos se requieren para construir el muro, solo necesitamos llenar el volumen del muro con la cantidad de ladrillos de este volumen. Entonces:

V_w=nV_b\\\\Donde\\\\n=Numero\hspace{3}de\hspace{3}ladrillos

Resolviendo para n:

n=\frac{V_w}{V_b} =\frac{4.8}{0.0016} =3000

Por lo tanto, necesitamos 3000 ladrillos para construir ese muro.

You might be interested in
2. G(x) = 2x² + 3x<br>Is the function even, odd, or neither?​
Bingel [31]
The function appears to be neither odd nor even
8 0
3 years ago
Plane B is flying 55mph
zysi [14]

Answer:

It takes around 5s for each plane to travel their respective distances.

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
3
muminat

Answer:

y = 3x + 3

Step-by-step explanation:

when you check, only that equation delivers the correct x and y pairs.

x = 0, => y = 3×0 + 3 = 3

x = 1, y = 3×1 + 3 = 3+3 = 6

x = 2, y = 3×2 + 3 = 6 + 3 = 9

x = 3, y = 3×3 + 3 = 9 + 3 = 12

it all fits.

6 0
2 years ago
I need answers to this question, 3x-2y=8
gogolik [260]

Answer:

I guess you want the y intercept form is so the answer is:

y = \frac{3}{2}x - 4

Step-by-step explanation:

3x - 2y = 8

subtract 3x from both sides

-2y = -3x + 8

divide -2 from both sides

y = \frac{3}{2}x - 4

and done

8 0
2 years ago
find the number of terms in an AP given that its first and last terms are 13 and - 23 respectively and that its common differenc
Leokris [45]

Answer:

<u>There are 17 terms in the sequence</u>

Step-by-step explanation:

<u>Arithmetic Sequence </u>

An arithmetic sequence is a list of numbers with a definite pattern by which each term is calculated by adding or subtracting a constant number called common difference to the previous term. If n is the number of the term, then:

a_n=a_1+(n-1)r

Where an is the nth term, a1 is the first term, and r is the common difference.

In the problem at hand, we are given the first term a1=13, the last term an=-23, and the common difference r=-2 1/4. Let's solve the equation for n:

\displaystyle n=1+\frac{a_n-a_1}{r}

We need to express r as an improper or proper fraction:

\displaystyle r=-2\frac{1}{4}=-2-\frac{1}{4}=-\frac{9}{4}

Substituting:

\displaystyle n=1+\frac{-23-13}{-\frac{9}{4}}

\displaystyle n=1+\frac{-36}{-\frac{9}{4}}

\displaystyle n=1+36*\frac{4}{9}=17

n=17

There are 17 terms in the sequence

5 0
3 years ago
Other questions:
  • A basket holds at most 15 pounds of apples and oranges. There are no more than 6 pounds of apples in the basket. This graph show
    11·2 answers
  • each cookie sells for $0.50 Sam spent $90 on baking supplies and each cookie cost $0.25 to make how many cookies does Sam need t
    14·1 answer
  • Please help asap will give brainliest!!!
    9·2 answers
  • Colin listed his assets and liabilities on a personal balance sheet.Colin's Balance Sheet (August 2013)AssetsLiabilities$1,500ca
    7·2 answers
  • Anyone please answer me ,<br> Please solve this question
    7·2 answers
  • Find the equation of the line.<br> Use exact numbers.
    15·1 answer
  • A coin weights about 14^-2 pounds. Find the weight of 1000 of coins. Round your answer to the nearest tenth.
    13·1 answer
  • What are the domain and range of the function below? Domain[0, ∞). range (-∞, ∞). Domain[0, ∞). Range (-∞,4). Domain(0,4). Range
    14·1 answer
  • What is the measurement at plot a?
    5·1 answer
  • How do I solve <br><br> x² - 10x-3=0
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!