Step-by-step explanation:
Applying rules of exponents to solve the given problems;
4^3 x 4^5 =
5^8 ÷ 5^-2 =
(6^3 ) ^ 4 =
For these problems, the applicable rules of exponents are;
aᵇ x aⁿ = aᵇ⁺ⁿ
aᵇ ÷ aⁿ = aᵇ⁻ⁿ
(aᵇ)ˣ = aᵇˣ
For the first problem; 4³ x 4⁵
aᵇ x aⁿ = aᵇ⁺ⁿ
4³ x 4⁵ = 4³⁺⁵ = 4⁸
Second problem: aᵇ ÷ aⁿ = aᵇ⁻ⁿ
5⁸ ÷ 5⁻² = 5⁸⁻⁽⁻²⁾ = 5⁸⁺² = 5¹⁰
Third problem; (aᵇ)ˣ = aᵇˣ
(6³)⁴ = 6³ˣ⁴ = 6¹²
First you multiply2x1 which is 2so now you know that y=2 right then you multiply 2 x 3=6 6=x for the last you wright YxX = 2 x 6=12.Hope I helped) this is your answer
<u>Answers with step-by-step explanation:</u>
1. Area of sector 1 = 
2. Area of sector 2 = 
3. Area of sector 3 = 
4. Area of sector 4 = 
5. Arc length of sector 1 = 
6. Arc length of sector 2 = 
7. Arc length of sector 3 = 
8. Arc length of sector 4 = 
The area of a trapezoid is basically the average width times the altitude, or as a formula:
Area = h ·
b 1 + b 2
2
where
b1, b2 are the lengths of each base
h is the altitude (height)
Recall that the bases are the two parallel sides of the trapezoid. The altitude (or height) of a trapezoid is the perpendicular distance between the two bases.
In the applet above, click on "freeze dimensions". As you drag any vertex, you will see that the trapezoid redraws itself keeping the height and bases constant. Notice how the area does not change in the displayed formula. The area depends only on the height and base lengths, so as you can see, there are many trapezoids with a given set of dimensions which all have the same area.