Answer:
Part a)

Part b)

So this speed is independent of the mass of the rider
Explanation:
Part a)
By force equation on the rider at the position of the hump we can say

now we will have


now we have



Part b)
At the top of the loop if the minimum speed is required so that it remains in contact so we will have

at minimum speed




So this speed is independent of the mass of the rider
It depends on the mass of an object and acceleration because of the gravity and the height of an object
Answer:
Option D) 4A
Explanation:
As the cycle of the wave passes by, the amplitude gives the longest journey when the spot travels from the undistributed position. During each cycle the spot travels "Four times" .
Considering one of this cycle, if it begins to travel from it's undistributed position , there would be four movements i.e
* Upward movement through distance A
*Downward movement through distance A
*Downward again through distance A
*Upward through distance A.
Then it would travel back to its undistributed position held
Answer:
the buoyant force on the chamber is F = 7000460 N
Explanation:
the buoyant force on the chamber is equal to the weight of the displaced volume of sea water due to the presence of the chamber.
Since the chamber is completely covered by water, it displaces a volume equal to its spherical volume
mass of water displaced = density of seawater * volume displaced
m= d * V , V = 4/3π* Rext³
the buoyant force is the weight of this volume of seawater
F = m * g = d * 4/3π* Rext³ * g
replacing values
F = 1025 kg/m³ * 4/3π * (5.5m)³ * 9.8m/s² = 7000460 N
Note:
when occupied the tension force on the cable is
T = F buoyant - F weight of chamber = 7000460 N - 87600 kg*9.8 m/s² = 6141980 N
Answer:


Explanation:

Solve using the quadratic formula.

