Answer:
d = 1.55 * 10⁻⁶ m
Explanation:
To calculate the distance between the adjacent grooves of the CD, use the formula,
..........(1)
The fringe number, m = 1 since it is a first order maximum
The wavelength of the green laser pointer,
= 532 nm = 532 * 10⁻⁹ m
Distance between the central maximum and the first order maximum = 1.1 m
Distance between the screen and the CD = 3 m
= Angle between the incident light and the diffracted light
From the setup shown in the attachment, it is a right angled triangle in which


Putting all appropriate values into equation (1)

That is very true, but what is the question asking you.
Explanation:
The average speed of a modern cruise ship is roughly 20 knots (23 miles per hour), with maximum speeds reaching about 30 knots (34.5 miles per hour).
Convert 38 ft/s^2 to mi/h^2. Then we se the conversion factor > 1 mile = 5280 feet and 1 hour = 3600 seconds.
So now we show it > 
Then we have to use the formula of constant acceleration to determine the distance traveled by the car before it ended up stopping.
Which the formula for constant acceleration would be > 
The initial velocity is 50mi/h 
When it stops the final velocity is 
Since the given is deceleration it means the number we had gotten earlier would be a negative so a = -93272.27
Then we substitute the values in....

So we can say the car stopped at 0.0134 miles before it came to a stop but to express the distance traveled in feet we need to use the conversion factor of 1 mile = 5280 feet in otherwards > 
So this means that the car traveled in feet 70.8 ft before it came to a stop.