1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
3 years ago
6

What is the best way to start a summary paragraph

Physics
2 answers:
pochemuha3 years ago
8 0
Start with what the paragraph is about and put it basically in your own words
devlian [24]3 years ago
6 0

Introduce the reader to the main topic that you will be writing about?


You might be interested in
An orchestra is practicing a piece that is to be played at an allegro tempo. The conductor sets a metronome at 160 beats per min
omeli [17]

Answer:

375 ms

Explanation:

the frequency of metronome , f = 160 beats per minute

f = 160 /60 beats per sec

f = 2.67 beats /s

the period of a single beat , T = 1/f

T = 1/2.67 s

T = 0.375 s = 375 ms

the period of a single beat is 375 ms

3 0
3 years ago
A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arr
Paha777 [63]

Answer:

The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.

Determine Fx."

F_{x}=-1N.m

Explanation:

We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.

torque=cross product of force and position . mathematically this can be express as

T=r*F

Where

F=F_{x}i+(7N)j-(5N)k  and the position vector

r=(2m)i-(3m)j+(2m)k

using the determinant method to expand the cross product in order to determine the torque we have

\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\

by expanding we arrive at

T=(18-14)i-(-12-2F_{x})j+(12+3F_{x})k\\T=4i-(-12-2F_{x})j+(12+3F_{x})k\\\\

since we have determine the vector value of the toque, we now compare with the torque value given in the question

(4Nm)i+(10Nm)j+(11Nm)k=4i-(-12-2F_{x})j+(12+3F_{x})k\\

if we directly compare the j coordinate we have

10=-(-12-2F_{x})\\10=12+2F_{x}\\ 10-12=2F_{x}\\ F_{x}=-1N.m

8 0
3 years ago
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
2 years ago
Find the speed of a satellite in a circular orbit around the Earth with a radius 3.57 times the mean radius of the Earth. (Radiu
madam [21]

The speed of the satellite in a circular orbit around the Earth is 1.32 x 10⁵ m/s.

<h3>Speed of the satellite</h3>

v = √(GM/r)

where;

  • G is universal gravitation constant
  • M is mass of Earth
  • r is radius of the satellite

v = √(6.67 x 10⁻¹¹ x 5.98 x 10²⁴/3.57 x 6.37x 10³)

v = 1.32 x 10⁵ m/s

Thus, the speed of the satellite in a circular orbit around the Earth is 1.32 x 10⁵ m/s.

Learn more about speed of satellite here: brainly.com/question/22247460

#SPJ1

7 0
2 years ago
Who may drive a vehicle in Texas?
nirvana33 [79]

Answer:

Yes

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • How much heat is absorbed by a 74g iron skillet when its temperature rises from 7oC to 28oC?
    10·1 answer
  • Complete the following sentence: How much you pay in taxes depends on _________________________.
    11·1 answer
  • Which contains the most moles: 10 g of hydrogen gas, 100 g of carbon, or 50 g of lead?
    11·1 answer
  • If Chris throws the baseball 60 meters in 4 seconds, what is the average speed of the football?
    9·1 answer
  • You charge an initially uncharged 65.7-mf capacitor through a 39.1-Ï resistor by means of a 9.00-v battery having negligible int
    15·1 answer
  • A dog walking to the right with a speed of 1.5 m/s sees a cat and speeds up with a constant rightward acceleration of magnitude
    5·1 answer
  • Distinguish
    5·1 answer
  • Plzzz someone help me!!!!.
    7·1 answer
  • Please! I cant fail this! Im literally freaking out.....
    6·1 answer
  • Can someone help ASAP pleasee
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!