Answer:
4.86 m
Explanation:
Given that,
The frequency produced by a humming bird, f = 70 Hz
The speed of sound, v = 340 m/s
We need to find how far does the sound travel between wing flaps. Let the distance is equal to its wavelength. So,

So, the sound travel 4.86 m between wings flaps.
Answer: 1. h
Explanation:
The block would reach exactly the same height from the ground. It would travel a greater distance away from the source, but the height away from the earth would remain the same as you are giving it the same energy each time. Therefore, it will reach the same gravitation potential energy.
Another approach to look at it this is seeing it when the Block moves up the slope, its kinetic energy decreases and the potential energy increases. In both cases, the kinetic energy decreases by same amount, therefore the block rises to same height H.
Try to use the formula;
1/2MV2 = mgh
Where V = √(2gh)
I hope this helps
I would say vibrations, but is there choices?
A region within a magnetic material in which magnetization is in a uniform direction this means the individual magnetic moments of the atoms are aligned with one another and they point the same direction. when cooled bwlow a temperature called the curie temperature the magnetization of a piece of ferromagnetic material.<span />