NH4OH is the answer. Hope this helps you.
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
Answer:
18.4 m
Explanation:
(a)
The known variables in this problem are:
u = 1.40 m/s is the initial vertical velocity (we take downward direction as positive direction)
t = 1.8 s is the duration of the fall
a = g = 9.8 m/s^2 is the acceleration due to gravity
(b)
The vertical distance covered by the life preserver is given by

If we substitute all the values listed in part (a), we find

Atmospheric pressure is caused by the weight of the atmosphere pushing down on itself and on the surface below it.
Pressure is defined as the force acting on an object divided by the area upon witch the force is acting.