1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
3 years ago
13

A capacitor with plates separated by distance d is charged to a potential difference ΔVC. All wires and batteries are disconnect

ed, then the two plates are pulled apart (with insulated handles) to a new separation of distance 2d. Part A Does the capacitor charge Q change as the separation increases? If so, by what factor? If not, why not?

Physics
2 answers:
nevsk [136]3 years ago
8 0

Answer:

When the separation between the capacitor plates is increased to 2d, and if the battery is disconnected, the charge between the condenser plates does not change, it is the same, and this is represented by the following expression: Q'= Q

Explanation:

fgiga [73]3 years ago
5 0

Answer:

Yes, the capacitor's Q load varies inversely proportional to the distance between plates.

Explanation:

In the attached files you see the inverse relationship between capacity and distance between plates "d".

In the following formula we see its relationship with the "Q" load

You might be interested in
TESE
Dmitry [639]

equal and opposite reaction.

5 0
3 years ago
It takes you 5 min to walk with an average velocity of .75 m/s to the north from the parking lot to the entrance of the amusemen
skad [1K]
A displacement is a vector quantity that takes into account the shortest distance from the starting point to the endpoint. 

The given above gave a time interval in minutes which needs to be converted to seconds. Given that each minute is 60 seconds, 5 minutes equal 300 seconds. To determine the distance, multiply time with speed. The product is 225 m. 

Thus, the displacement is 225 m. 
3 0
3 years ago
A body with the inertial
Andrews [41]

Answer:

Explanation:

Hi there,

To get started, recall the kinematic equations from either a textbook, equation sheet, etc. Kinematic equations are used when acceleration is <em>constant,</em> as stated in the prompt.

Best way to use kinematic equations is to see which variable you are looking for, then which variable is unknown to you and is not needed for that equation.

a) average velocity

Takes the form of:

v_a_v_g=\frac{d_t_o_t_a_l}{t}=\frac{v+v_0}{2} this is the literal definition of average velocity; initial plus final divided by 2.

We know total displacement and total time elapsed, so we will use the middle form of the equation:

v_a_v_g=\frac{1640m}{40s}=41 \ m/s

b) the final velocity

We can still use the average velocity formula, as the other two equations that include final velocity have acceleration variable which is unknown as of now.

Solve for final velocity:

v=(2v_a_v_g)-v_o = 2(41 \ m/s) - (8 m/s) = 74 m/s\\ this makes sense, since a velocity later in time is higher than a velocity earlier in time. It is increasing with increasing time because of acceleration.

c) the acceleration

There are two equations that can be used to solve this, but we will use the less time-consuming one, but both produce same answer:

a = \frac{v-v_0}{t_t_o_t_a_l} = \frac{(74-8)m/s}{40s} =1.65 m/s^{2}

Notice, change in velocity over change in time, and acceleration is constant. When acceleration is constant, it models a linear function, and acc. is just slope!

Study well and persevere. If you liked this solution, hit Thanks or give a rating!

thanks,

3 0
3 years ago
A finch rides on the back of a Galapagos tortoise, which walks at the stately pace of 0.060 m/s. After 1.1 minutes, the finch ti
Romashka [77]

Answer:

Average Speed = 6.37 m/s

Explanation:

The average speed is simply given by the following formula:

Average Speed = Total Distance Traveled/Total Time Spent

here,

Total Time Spent = 1.1 min + 1.5 min = (2.6 min)(60 s/min) = 156 s

Now, for total distance, we have to calculate the distance traveled on tortoise and distance traveled while flying, separately. Therefore,

Distance Traveled on Tortoise = (Time spent on Tortoise)(Speed of Tortoise)

Distance Traveled on Tortoise = (1.1 min)(60 s/min)(0.06 m/s) = 3.96 m

Similarly,

Flying Distance = (Flying Time)(Flying Speed) = (1.5 min)(60 s/min)(11 m/s)

Flying Distance =  990 m

Since, total distance is the sum of both distances, therefore,

Total Distance = 3.96 m + 990 m = 993.96 m

Now, using the values in equation of average speed, we get:

Average Speed = 993.96 m/156 s

<u>Average Speed = 6.37 m/s</u>

4 0
3 years ago
a 5.0 kg ball is dropped from a 2.5 m high window. what is the velocity of the ball just before it hits the ground?
julsineya [31]

Answer:

Approximately 7.0\; \rm m \cdot s^{-1}.

Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.

Explanation:

Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant g = 9.81 \; \rm m \cdot s^{-2} near the surface of the earth.

For an object that is accelerating constantly,

v^2 - u^2 = 2\, a \, x,

where

  • u is the initial velocity of the object,
  • v is the final velocity of the object.
  • a is its acceleration, and
  • x is its displacement.

In this case, x is the same as the change in the ball's height: x = 2.5\; \rm m. By assumption, this ball was dropped with no initial velocity. As a result, u = 0. Since the ball is accelerating due to gravity, a = 9.81\; \rm m \cdot s^{-2}.

v^2 - u^2 = 2\, g \cdot h.

In this case, v would be the velocity of the ball just before it hits the ground. Solve for

v^2 = 2\, a\, x + u^2.

\begin{aligned}v &= \sqrt{2\, a\, x + u^2} \\ &= \sqrt{2\times 9.81 \times 2.5 + 0} \\ &\approx 7.0\; \rm m\cdot s^{-1}\end{aligned}.

3 0
3 years ago
Other questions:
  • Matt, Erin, and Lauren were having a challenge to see who could dissolve a one-pound cube of sugar the quickest.
    12·1 answer
  • The Moon orbits Earth and not the Sun because the Sun doesn't exert a gravitational force on the Moon. true or false
    7·2 answers
  • If an object is moving up, is it considered to have a positive or negative velocity?
    8·1 answer
  • What is the maximum number of double bonds that a hydrogen atom can form?
    7·1 answer
  • A meter stick balances at the 50.0-cm mark. If a mass of 50.0 g is placed at the 90.0-cm mark, the stick balances at the 61.3-cm
    13·2 answers
  • A series circuit that is connected to a 50 V, 60 Hz source is made up of 25 ohm resistor, capacite wieh X= 18 ohms, and inductor
    13·1 answer
  • A 75-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic field of 1.00 T directed perpendicular to th
    12·1 answer
  • Which particle would have the slowest rate of deposition? A.round particle B.very large particle C.particle with sharp ends D.pa
    14·2 answers
  • What is your initial speed if you accelerate at 5.8 m/s/s for 3.0 seconds and achieve a final speed of 45 m/s?
    5·1 answer
  • Find the energy u of the capacitor in terms of c and q by using the definition of capacitance and the formula for the energy in
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!