1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GenaCL600 [577]
3 years ago
15

Select the correct answer.

Physics
1 answer:
lawyer [7]3 years ago
5 0

I believe the answer is C

You might be interested in
When you park your car uphill next to a curb, the right front wheel should be:?
Cloud [144]
<span> When headed uphill at a </span>curb<span>, turn the front </span>wheels<span> away from the </span>curb<span> and let </span>your vehicle<span> roll backwards slowly until the rear part of the front </span>wheel<span> rests against the </span>curb<span> using it as a block.</span>
6 0
2 years ago
A cannon ball is shot straight upward with a velocity of 72.50 m/s. How high is the cannon ball above the ground 3.30 seconds af
disa [49]

Answer:

Explanation:

Given

Cannon is fired with a velocity of u=72.50\ m/s

Using Equation of motion

y=ut+\frac{1}{2}at^2

where

y=displacement

u=initial\ velocity

a=acceleration

t=time

after time t=3.3 s

y=72.50\times 3.3-\frac{1}{2}\times 9.8\times (3.3)^2

y=239.25-53.36

y=185.89\ m

So after 3.3 s cannon ball is at a height of 185.89 m

6 0
3 years ago
There's an electric field in some region of space that doesn't change with position. An electron starts moving with a speed of 2
tangare [24]

Answer:

Explanation:

Given

speed of Electron u=2\times 10^7\ m/s

final speed of Electron v=4\times 10^7\ m/s

distance traveled d=1.2\ cm

using equation of motion

v^2-u^2=2as

where v=Final velocity

u=initial velocity

a=acceleration

s=displacement

(4\times 10^7)^2-(2\times 10^7)^2=2\times a\times 1.2\times 10^{-2}

a=5\times 10^{16}\ m/s^2

acceleration is given by a=\frac{qE}{m}

where q=charge of electron

m=mass of electron

E=electric Field strength

5\times 10^{16}=\frac{1.6\times 10^{-19}\cdot E}{9.1\times 10^{-31}}

E=248.3\ kN/C                

5 0
3 years ago
An arrow movirg 48.3 m/s has 5.22<br> kg•m/s of momentum. What is its<br> mass?
spin [16.1K]

Answer:

0.11 kg

Explanation:

Ft = MV

Ft = momentum 5.22kg m/s

M = mass

V = velocity 48.3m/s

Therefore

5.22 = M x 48.3

Divide both sides by 48.3

5.22/48.3 = M x 48.3/48.3

0.11 = M

M = 0.11kg

6 0
3 years ago
FIGURE 2 shows a 1.5 kg block is hung by a light string which is wound around a smooth pulley of radius 20 cm. The moment of ine
Sindrei [870]

Answer:

At t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

Explanation:

First, we consider all the forces acting on the pulley.

There is only one force acting on the pulley, and that is due to the 1.5 kg mass attached to it.

Therefore, the torque on the pulley is

\tau=Fd=mg\cdot R

where m is the mass of the block, g is the acceleration due to gravity, and R is the radius of the pulley.

Now we also know that the torque is related to angular acceleration α by

\tau=I\alpha

therefore, equating this to the above equation gives

mg\cdot R=I\alpha

solving for alpha gives

\alpha=\frac{mgR}{I}

Now putting in m = 1.5 kg, g = 9.8 m/s^2, R = 20 cm = 0.20 m, and I = 2 kg m^2 gives

\alpha=\frac{1.5\cdot9.8\cdot0.20}{2}\boxed{\alpha=1.47s^{-2}}

Now that we have the value of the angular acceleration in hand, we can use the kinematics equations for the rotational motion to find the angular velocity and the number of revolutions at t = 4.2 s.

The first kinematic equation we use is

\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2

since the pulley starts from rest ω0 = 0 and theta = 0; therefore, we have

\theta=\frac{1}{2}\alpha t^2

Therefore, ar t = 4.2 s, the above gives

\theta=\frac{1}{2}(1.47)(4.2)^2

\boxed{\theta=12.97}

So how many revolutions is this?

To find out we just divide by 2 pi:

\#\text{rev}=\frac{\theta}{2\pi}=\frac{12.97}{2\pi}\boxed{\#\text{rev}=2.06}

Or about 2 revolutions.

Now to find the angular velocity at t = 4.2 s, we use another rotational kinematics equation:

\omega^2=w^2_0+2\alpha(\Delta\theta)_{}

Since the pulley starts from rest, ω0 = 0. The change in angle Δθ we calculated above is 12.97. The value of alpha we already know to be 1.47; therefore, the above becomes:

\omega^2=0+2(1.47)(12.97)w^2=38.12\boxed{\omega=6.17.}

Hence, the angular velocity at t = 4.2 w is 6. 17 rad / s

To summerise:

at t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

3 0
1 year ago
Other questions:
  • Listed below are geographic features of the terrestrial worlds. In each case, identify the geological process: impact cratering,
    12·1 answer
  • two strands of DNA produced during replication are copies of each other because each strand in the double helix is
    8·2 answers
  • A book rests on a table. The earth pulls down on the book through the weight force. Which force is the reaction force to the wei
    14·1 answer
  • A condition that affects the ability to sleep or the quality of sleep is referred to as a __________.
    8·2 answers
  • Can nuclear be reused? Why or why not? Use in your own words.
    7·1 answer
  • Which of the following states that energy cannot be created or destroyed?
    9·1 answer
  • Vocabulary
    7·1 answer
  • Three children are sitting on a merry-go-round while a fourth child is pushing on the outside edge with a constant force. Why do
    10·1 answer
  • Uranium-235 Fission
    5·1 answer
  • an object is held 33.5 cm from a convex mirror. it creates a virtual image of magnification 0.253. what is the focal length of t
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!