The term precision is how repeatable the experiment is
Accuracy is how close to the right answer you are.
Heat required to melt 0.05 kg of aluminum is 28.7 kJ.
<h3>What is the energy required to melt 0.05 kg of aluminum?</h3>
The heat energy required to melt 0.05 kg of aluminum is obtained from the heat capacity of aluminum and the melting point of aluminum.
The formula to be used is given below:
- Heat required = mass * heat capacity * temperature change
Assuming the aluminum sheet was at room temperature initially.;
Room temperature = 25 °C
Melting point of aluminum = 660.3 °C
Temperature difference = (660.3 - 25) = 635.3 903
Heat capacity of aluminum = 903 J/kg/903
Heat required = 0.05 * 903 * 635.3
Heat required = 28.7 kJ
In conclusion, the heat required is obtained from the heat change aluminum and the mass of the aluminum melted.
Learn more about heat capacity at: brainly.com/question/21406849
#SPJ1
Answer:
The car will reach 20 m/s in 4.76 seconds
Explanation:
The car moves following an uniformly accelerated motion, therefore we know that
Where
are
Then 
Answer:
n = 2.06 moles
Explanation:
The absolute pressure at depth of 27 inches can be calculated by:
Pressure = Pressure read + Zero Gauge pressure
Zero Gauge pressure = 14.7 psi
Pressure read = 480 psi
Total pressure = 480 psi + 14.7 psi = 494.7 psi
P (psi) = 1/14.696 P(atm)
So, Pressure = 33.66 atm
Temperature = 25°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
T = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
33.66 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K
⇒n = 2.06 moles