Answer:
p = 1.16 10⁻¹⁴ C m and ΔU = 2.7 10 -11 J
Explanation:
The dipole moment of a dipole is the product of charges by distance
p = 2 a q
With 2a the distance between the charges and the magnitude of the charges
p = 1.7 10⁻⁹ 6.8 10⁻⁶
p = 1.16 10⁻¹⁴ C m
The potential energie dipole is described by the expression
U = - p E cos θ
Where θ is the angle between the dipole and the electric field, the zero value of the potential energy is located for when the dipole is perpendicular to the electric field line
Orientation parallel to the field
θ = 0º
U = 1.16 10⁻¹⁴ 1160 cos 0
U1 = 1.35 10⁻¹¹ J
Antiparallel orientation
θ = 180º
cos 180 = -1
U2 = -1.35 10⁻¹¹ J
The difference in energy between these two configurations is the subtraction of the energies
ΔU = | U1 -U2 |
ΔU = 1.35 10-11 - (-1.35 10-11)
ΔU = 2.7 10 -11 J
The velocity of the body is zero; option A
<h3>What is the motion of an oscillating body?</h3>
The motion of an oscillating body is known as simple harmonic motion.
Simple harmonic motion involves a periodical motion of a body whose acceleration is directed towards a fixed point.
For a body that is oscillating up and down at the end of a spring, considering when the body is at the top of its up-and-down motion, the velocity of the body at the top and down is zero since the body comes to rest at the top and down position of its motion.
In conclusion, oscillating bodies undergo simple harmonic motion.
Learn more about simple harmonic motion at: brainly.com/question/24646514
#SPJ1
Answer:
30.5
Explanation:
because you will basically have to be like flash
Answer:
It would crack.
Explanation: The pressure from dropping it would crush the eggshell therefore breaking the egg.
The planet MARS is visible without a telescope on many clear nights. The planets JUPITER, MERCURY, VENUS and SATURN are also viewable without the aid of magnification.