All, or almost all, warm-blooded creatures get rid of excess heat by evaporating moisture from their bodies. It's a great system, because evaporation takes a lot of heat. That's the reason people perspire when we're active and build up a lot of heat inside. The evaporation of sweat from our skin carries away heat with it.
Dogs do not sweat on their skin. The only place they can evaporate moisture is through their mouth. Panting speeds up the evaporation by blowing air across the moisture.
Answer:
303 Ω
Explanation:
Given
Represent the resistors with R1, R2 and RT
R1 = 633
RT = 205
Required
Determine R2
Since it's a parallel connection, it can be solved using.
1/Rt = 1/R1 + 1/R2
Substitute values for R1 and RT
1/205 = 1/633 + 1/R2
Collect Like Terms
1/R2 = 1/205 - 1/633
Take LCM
1/R2 = (633 - 205)/(205 * 633)
1/R2 = 428/129765
Take reciprocal of both sides
R2 = 129765/428
R2 = 303 --- approximated
Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J
Q = mcΔT
<span>q = 55.8g x 0.450J/gC x 23.5C </span>
<span>q = 590. J ................ to three significant digits
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>