1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
8

In preparation for a demonstration, your professor brings a 1.50−L bottle of sulfur dioxide into the lecture hall before class t

o allow the gas to reach room temperature. If the pressure gauge reads 480 psi and the lecture hall is 25°C, how many moles of sulfur dioxide are in the bottle? In order to solve this problem, you will first need to calculate the pressure of the gas. Hint: The gauge reads zero when 14.7 psi of gas remains.
Physics
1 answer:
mina [271]3 years ago
7 0

Answer:

n = 2.06 moles

Explanation:

The absolute pressure at depth of 27 inches can be calculated by:

Pressure = Pressure read + Zero Gauge pressure

Zero Gauge pressure = 14.7 psi

Pressure read = 480 psi

Total pressure = 480 psi + 14.7 psi = 494.7 psi

P (psi) = 1/14.696  P(atm)

So, Pressure = 33.66 atm

Temperature = 25°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (25 + 273.15) K = 298.15 K  

T = 298.15 K  

Volume = 1.50 L

Using ideal gas equation as:

PV=nRT

where,  

P is the pressure

V is the volume

n is the number of moles

T is the temperature  

R is Gas constant having value = 0.0821 L.atm/K.mol

Applying the equation as:

33.66 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K  

⇒n = 2.06 moles

You might be interested in
This DNA strand consists of eight pairs of nitrogenous bases. How many different sequences of eight bases can you make?
BaLLatris [955]

Answer:

assuming that there is an equal amount of each base, you can make 65,536 bases

Explanation:

Adenine(A) Guanine(G) Thymine(T) and Cytosine(C) are the 4 nitrogen bases.

8 0
3 years ago
How does the molecular structure of a water molecule affect its polarity?
MA_775_DIABLO [31]

Answer:

The polarity of water molecules means that molecules of water will stick to each other like when unlike charges attracts. This is called hydrogen bonding.

Polarity makes water a good solvent, gives it the ability to stick to itself (cohesion), stick to other substances (adhesion), and have surface tension (due to hydrogen bonding).

When the two hydrogen atoms bond with the oxygen, they attach to the top of the molecule. This molecular structure gives the water molecule polarity, or a lopsided electrical charge that attracts other atoms. The end of the molecule with the two hydrogen atoms is positively charged.

Explanation:

4 0
3 years ago
Read 2 more answers
Sharp claws in wild animals is an example of which type of adaptation?
Sati [7]

Answer:

Structural adaptation

Explanation:

When any physical body part of an organism helps it in surviving, then this mechanism of survival is called a structural adaptation. For example short tail of penguins helps them in balancing on their heels and tails due to which they are able to reduce heat released from their feet. Thus, any physical parts of an organism that helps them in coping with the surrounding physical environment /predators are refereed to as a mode of structural adaptation.

3 0
3 years ago
Which sequence shows electromagnetic waves arranged in a decreasing order of their wavelengths?
Hunter-Best [27]

Answer: Gamma rays, x-rays, ultraviolet rays, visible light, and infrared rays.

8 0
3 years ago
A 4 kg textbook sits on a desk. It is pushed horizontally with a 50 N applied force against a 15 N frictional force.
GarryVolchara [31]

a) See free-body diagram in attachment

b) The book is stationary in the vertical direction

c) The net horizontal force is 35 N in the forward direction

d) The net force on the book is 35 N in the forward horizontal direction

e) The acceleration is 8.75 m/s^2 in the forward direction

Explanation:

a)

The free-body diagram of a body represents all the forces acting on the body using arrows, where the length of each arrow is proportional to the magnitude of the force and points in the same direction.

From the diagram of this book, we see there are 4 forces acting on the book:

- The applied force, F = 50 N, pushing forward in the horizontal direction

- The frictional force, F_f = 15 N, pulling backward in the horizontal direction (the frictional force always acts in the direction opposite to the motion)

- The weight of the book, W=mg, where m is the mass of the book and g=9.8 m/s^2 is the acceleration of gravity, acting downward. We can calculate its magnitude using the mass of the book, m = 4 kg:

W=(4)(9.8)=39.2 N

- The normal reaction exerted by the desk on the book, N, acting upward, and balancing the weight of the book

b)

The book is in equilibrium in the vertical direction, therefore there is no motion.

In fact, the magnitude of the normal reaction (N) exerted by the desk on the book is exactly equal to the weight of the book (W), so the equation of motion along the vertical direction is

N-W=ma

where a is the acceleration; however, since N = W, this becomes

a=0

And since the book is initially at rest on the desk, this means that there is no motion.

c)

We said there are two forces acting in the horizontal direction:

- The applied force, F = 50 N, forward

- The frictional force, F_f = 15 N, backward

Since they act along the same line, we can calculate their resultant as

\sum F = F - F_f = 50 - 15 = 35 N

and therefore the net force is 35 N in the forward direction.

d)

The net force is obtained as the resultant  of the net forces in the horizontal and vertical direction. However, we have:

- The net force in the horizontal direction is 35 N

- The net force in the vertical direction is zero, because the weight is balanced by the normal reaction

Therefore, this means that the total net force acting on the book is just the net force acting on the horizontal direction, so 35 N forward.

e)

The acceleration of the book can be calculated by using Newton's second law:

\sum F = ma

where

\sum F is the net force

m is the mass

a is the acceleration

Here we have:

\sum F = 35 N (in the forward direction)

m = 4 kg

Therefore, the acceleration is

a=\frac{\sum F}{m}=\frac{35}{4}=8.75 m/s^2 (forward)

Learn more about forces, weight and Newton's second law:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

#LearnwithBrainly

8 0
4 years ago
Other questions:
  • What part of the water is affected by a wave in deep water
    13·1 answer
  • A 7.5 kg block is placed on a table. if it's bottom surface area is 0.6m2, how much pressure does the block exert on the tableto
    11·1 answer
  • What voltage must be applied to an 6 nF capacitor to store 0.14 mC of charge? Give answer in terms of kV.
    13·1 answer
  • How does enormous energy get released from the sun​
    11·1 answer
  • An egg is dropped from the top of the band hall. if the band hall is 25 m tall, determine the time it takes the egg to hit the f
    9·1 answer
  • Which describes an object’s velocity that changes by the same amount each second?
    12·2 answers
  • A person pushes on a 57-kg refrigerator with a horizontal force of 267 N; the - sign indicates that the force points in the +x d
    5·1 answer
  • 5/6 - 1/3 sorry for add part i was meant to do minus but tell me what it is?​
    10·2 answers
  • A proton moves perpendicular to a uniform magnetic field B at a speed of 2.30 107 m/s and experiences an acceleration of 2.50 10
    5·1 answer
  • A push on a 1-kg brick accelerates it. Neglecting friction, equally accelerating a 10-kg brick requires 10 times as much force.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!