As seagull drops a shell from rest at a height of 12 m, so we use kinematic equation of motion,

Here, h is the height, u is initial velocity , v is final velocity and g is acceleration due to gravity.
Given, h = 12 m.
We take,
and
because seagull drops a shell from rest.
Therefore, the speed of shell when it hits the rocks,

The types of meteorites are iron, stone and iron-stony
meteorites. The stony-iron meteorites account for less than 2% of all known
meteorites. They comprised of roughly equal amounts of nickel-iron and stone
and are divided into two groups: pallasites and mesosiderites. The answers are
only B and C
Answer:
Mass of the body will be = 6 kg
Explanation:
Given:
Mass of an object = 6 kg
Acceleration due to gravity of the planet = 10 
To find the mass of the body on that planet.
Solution:
Mass of the body is defined as the total amount of matter contained in the body.
Thus, mass of a body will always remain constant irrespective of the acceleration due to gravity. This is because it is an independent quantity and does not vary with acceleration due to gravity.
<em>It is the weight of the body that changes with the change in the acceleration due to gravity as it is given by:</em>

where
represents mass of the body and
represents the accelration due to gravity.
Hence, the mass of the given body will remain = 6 kg.
I hope you are referring to Newton's Laws of Motion by "Newton's Law".
There are three laws quoted by the great physicist of all time Sir Isaac Newton.
These laws are the building-blocks of the field of the Physics known as Classical Physics or Classical Mechanics.
Law 1. If no force applied externally, then a body in rest will always be in rest and a body in motion will continue to move in a straight line with a uniform velocity.
Law 2. The rate of change of momentum is directly proportional to the force applied and the direction of motion is always in the direction of the force applied.
Law 3. Every action has an equal and opposite reaction.
The Law 1 is also called the law of Inertia.
From the 2nd law, we can derive the equation of force, that is F =m.a (m = mass; a = acceleration)