Answer:
3. Fructose
Explanation:
Fructose is a sugar found naturally in fruits, fruit juices, some vegetables and honey.
Answer:
False
Explanation:
Actually, the converse is true. The mass number would be lower than the sum of the mass of the individual nucleons combined. According to Einstein’s equation of E=MC², this will be due to a phenomenon called mass defect. This ‘anomaly’ is due to the loss of some energy (now the nuclear binding energy) when the nucleons were brought in together to form the nucleus.
By using an electric field, it is feasible to differentiate between these different forms of radiation.
<h3>What is a radioactive source?</h3>
A source that emits radiation like gamma, beta, and alpha rays is said to be radioactive. Using an electric field, we can discriminate between these different forms of radiation.
The field does not deflate the gamma rays, but it does deflate the alpha and beta rays, with the alpha being deflated to the field's negative portion and the beta to its positive part.
Hence, by using an electric field, it is feasible to differentiate between these different forms of radiation.
To learn more about the radioactive source refer;
brainly.com/question/12741761
#SPJ1
Answer:
Explanation:
A proton and electron are moving in the positive x direction, this shows that their velocity will be in the positive x direction
V = v•i
Magnetic field Is the positive z direction
B = B•k
A. For proton.
Proton has a positive charge of q
Direction of force on proton
Force is given as
F = q(v×B)
F = q( v•i × B•k)
F = qvB (i×k)
From vectors i×k = -j
F = -qvB •j
Then, for the positive charge, the force will act in the negative direction of the y-axis
B. For electron
Electron has a negative of -q
Direction of force on proton
Force is given as
F = q(v×B)
F = -q( v•i × B•k)
F = -qvB (i×k)
From vectors i×k = -j
F = --qvB •j
F = qvB •j
Then, for the negative charge, the force will act in the positive direction of the y-axis
<span>The mass of an electron is not significant to the overall mass of the atom. (B)
It takes roughly 1,850 electrons to equal the mass of ONE proton or neutron,
but the most complex atom has only around 100 of them.</span>