Answer:
<h3>Hydrogen gas is responsible for polarizination defect.</h3>
the friction force provided by the brakes is 30000 N.
<h3>What is friction force?</h3>
Friction force is the force that opposes the motion between two bodies in contact.
To calculate the average friction force provided by the brakes, we apply the formula below.
Formula:
- K.E = F'd............. Equation 1
Where:
- K.E = Kinetic energy of the train
- F' = Friction force provided by the brakes
- d = distance
Make F' the subject of the equation
- F' = K.E/d............ Equation 2
From the question,
Given:
Substitute these values into equation 2
- F' = (8.1 ×10⁶)/270
- F' = 30000 N
Hence, the friction force provided by the brakes is 30000 N
Learn more about friction force here: brainly.com/question/13680415
Answer:
Explained
Explanation:
1.Each of the spring scale will read 10N,considering acceleration due to gravity as 10 m/s^2
2.Each of the spring scale will read 10N because each string exerts a force of 10 N to counterbalance the force of 1 kg mass attached to it. This means the tension on the both side of the string is 10 N. So the scale will read 10 N. Also as spring balances are attached in series and kept on table so both spring balances will read same readings.
<span>The force that an object feels in an electric field is the magnitude of the electric field E times the charge on the object Q.
We know that the magnitude of the charge of an electron is 1.6 x 10^{-19} C
F = E x Q
E = F / Q
E = (3.5 x 10^{-16} N) / (1.6 x 10^{-19} C)
E = 2.19 x 10^3 N/C
The magnitude of the electric field at the location of the electron is 2.19 x 10^3 N/C</span>
Answer:
Explanation:
Let the velocity of rocket case and payload after the separation be v₁ and v₂ respectively. v₂ will be greater because payload has less mass so it will be fired with greater speed .
v₂ - v₁ = 910
Applying law of conservation of momentum
( 250 + 100 ) x 7700 = 250 v₁ + 100 v₂
2695000 = 250 v₁ + 100 v₂
2695000 = 250 v₁ + 100 ( 910 +v₁ )
v₁ = 7440 m /s
v₂ = 8350 m /s
Total kinetic energy before firing
= 1/2 ( 250 + 100 ) x 7700²
= 1.037575 x 10¹⁰ J
Total kinetic energy after firing
= 1/2 ( 250 x 7440² + 100 x 8350² )
= 1.0405325 x 10¹⁰ J
The kinetic energy has been increased due to addition of energy generated in firing or explosion which separated the parts or due to release of energy from compressed spring.