D. X=130 but im not sure if this is correct
Hi Jessica,
<span>Remember PEMDAS (Parenthesis, Exponents, Multiplication & Division, Addition & Subtraction).
√3 x 66.15/4.41 {Exponents/Cube & Square Roots First}
1.73 x 66.15 ÷ 4.41 {Multiplication}
114.4395 ÷ 4.41 {Division}
25.95 {Final Answer}
Cheers,
Izzy</span>
Answer:
40 ft/in
Step-by-step explanation:
There is 40 feet for every inch of the model
1) Finding the zeros of this function f(x) =x² +3x -18
f(x) = x²+3x-18 <em>Factoring this equation, and rewriting it</em>
<em />
<em>Which two numbers whose sum is equal to 3 and their product is equal to 18?</em>
<em>6 -3 = 3 and 6 *-3 = -18</em>
<em />
<em>So we can rewrite as (x +6) (x-3)</em>
<em> </em>
(x+6)(x-3)=0 <em>Applying the Zero product rule, to find the roots</em>
x+6=0,
x=-6
x-3=0,
x=3
S={3,-6}
2) Setting a table, plugging in the values of x into the factored form: (x-6)(x-3)
x | y |
1 | -14 (1 +6)(1-3) =-14
2 | -8 (2 +6)(2-3) =-8
3 | 0
4 | 10
-5 | -8
-6 | 0
3) Plotting the function:
Answer:
There is a 0.57% probability that a randomly selected nanny who was placed during the last year is a male nanny (a "mannie").
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
In this problem, we have that:
Desired outcomes:
The number of male nannies selected. 24 of the nannies placed were men. So the number of desired outcomes is 24.
Total outcomes:
The number of nannies selected. 4,176 nannies were placed in a job in a given year. So the number of total outcomes 4176.
Find the probability that a randomly selected nanny who was placed during the last year is a male nanny (a "mannie").

There is a 0.57% probability that a randomly selected nanny who was placed during the last year is a male nanny (a "mannie").