Answer: 3P/2
Explanation: Let the resistance of the bulbs be R.
now lets consider a Voltage V is supplied to the parallel circuit such that

V=IR
both single bulb( bulb 3) and the two bulbs ( bulb 1 and bulb 2) are provided the same Voltage
( as the voltage remains same in parallel circuit)
we can calculate the Current across both circuits
At Bulb 3
Current 1=V/R
Power1=Voltage * Current1
Power1=V*V/R
Power1=P
At Bulb 1 and Bulb 2
Total Resistance= R+R=2R

Power2=Voltage * Current2


E = <u>kQ</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
(r + h)²
where,
k = 9 × 10^9Nm²C^-2
Q = total charge, 300uC = 300 × 10^ -6C
r = 8 × 10^ -2m
h = 16 × 10^ -2m
then,
E = <u>9</u><u>e</u><u>9</u><u> </u><u>*</u><u> </u><u>3</u><u>0</u><u>0</u><u>e</u><u>^</u><u>-</u><u>6</u><u> </u><u> </u><u> </u><u> </u>
(8e^-2 + 16e^-2)²
E = 4687500N/C
Answer:
5.38 m/s^2
Explanation:
NET force causing the object to accelerate = 50 -10 = 40 N
Mass of the object = 73 N / 9.81 m/s^2 = 7.44 kg
F = ma
40 = 7.44 * a a = 5.38 m/s^2
There is one mistake in the question.The Correct question is here
A cat falls from a tree (with zero initial velocity) at time t = 0. How far does the cat fall between t = 1/2 and t = 1 s? Use Galileo's formula v(t) = −9.8t m/s.
Answer:
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
Explanation:
Given data
time=1/2 sec to 1 sec
v(t)=-9.8t m/s
To find
Distance
Solution
As the acceleration as first derivative of velocity with respect to time
So
acceleration(-g)= dv/dt
Solve it
dv = a dt
dv = -g dt
v - v₀ = -gt
v= dy/dt
dy = v dt
dy = ( v₀ - gt ) dt
y(1s) - y(1/2s) = ( v₀ ) ( 1 - 1/2 ) - ( g/2 )[ ( t1)² -( t1/2s )² ]
y(1s) - y(1/2s) = ( - 9.8/2 ) [ ( 1 )² - ( 1/2 )² ]
y1s - y1/2s = ( - 4.9 m/s² ) ( 3/4 s² )
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
The answer is C. Hope this helps.