The resistance of a conductor is given by:

where

is the resistivity of the material
L is the length of the conductor
A is its cross-sectional area
We can use this formula to solve both parts of the problem.
a) The length of the copper wire is L=1.0 m. Its diameter is d=0.50 mm, so its radius is

And its cross-sectional area is

The copper resistivity is

, therefore the resistance of this piece of wire is

b) The length of this piece of iron is L=10 cm=0.10 m. Its cross-sectional size is L=1.0 mm=0.001 m, so its cross-sectional area is

The iron resistivity is

, therefore the resistance of this piece of wire is
Answer:
Internal Oblique.
Explanation:
Lower crossed syndrome is a condition in which there are strong and weak muscles. So there is an imbalance of muscle strengths. It occurs when some muscles constanly get shortened or lengthened just like in this case internal oblique muscle got lengthened.
Answer:
ride to our expected destination
Density is mass per unit volume. In this case, the unit is g/ml
Mass=453g ρ=453g/224ml
Volume=224ml ρ=2.022g/ml(rounded to nearest hundredth)
Density=?
ρ=mass/volume
Therefore the density of the substance is 2.022g/ml
Answer:
I think, (remember think) it might be 2.0 m/s
Explanation:
If it's wrong I'm truly sorry.