Power = work/time = (Force times distance)/time
= (30N *10.0m)/5.00s = 300/5 = 60 Watts
Atoms like carbon and nitrogen do not form ions because the electronegativity of these atoms are not that high nor very low which means electrons are fairly stable in the atom. While chlorine has very high electronegativity and for sodium very low, atoms tend to receive or release electrons.
Answer:
64 J
Explanation:
The potential energy change of the spring ∆U = -W where W = work done by force, F.
Now W = ∫F.dx
So, ∆U = - ∫F.dx = - ∫Fdxcos180 (since the spring force and extension are in opposite directions)
∆U = - ∫-Fdx
= ∫F.dx
Since F = 40x - 6x² and x moves from x = 0 to x = 2 m, we integrate thus, ∆U = ∫₀²F.dx
= ∫₀²(40x - 6x²).dx
= ∫₀²(40xdx - 6x²dx)
= ∫₀²(40x²/2 - 6x³/3)
= ∫₀²(20x² - 2x³)
= [20x² - 2x³]₀²
= [(20(2)² - 2(2)³) - (20(0)² - 2(0)³)
= [(20(4) - 2(8)) - (0 - 0))
= [80 - 16 - 0]
= 64 J
We take the derivative of Ohm's law with respect to time: V = IR
Using the product rule:
dV/dt = I(dR/dt) + R(dI/dt)
We are given that voltage is decreasing at 0.03 V/s, resistance is increasing at 0.04 ohm/s, resistance itself is 200 ohms, and current is 0.04 A. Substituting:
-0.03 V/s = (0.04 A)(0.04 ohm/s) + (200 ohms)(dI/dt)
dI/dt = -0.000158 = -1.58 x 10^-4 A/s