The velocity of sound in at 300C is 511.3 m/s.
Explanation:
The equation that gives the speed of sound in ar as a function of the air temperature is the following:

where
T is the temperature of the air, measured in Celsius degrees
In this problem, we want to find the speed of sound in ar for a temperature of

Substituting into the equation, we find:

So, the velocity of sound in at 300C is 511.3 m/s.
Learn more about sound waves:
brainly.com/question/4899681
#LearnwithBrainly
<span>The best way to cool soft and thick foods when using the refrigerator is by having them to be placed and poured on a pan or another way is by having them to be placed in one container in which they are in a water bath, to be heated of.</span>
F=MA
F=(8 kg)(9.8 m/s)
F= 78.4 N
W=FD
W=(78.4 N)(7 m)
W=548.8 J
How this helps
Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Explanation:
Given that;
mass of vehicle m = 1000 kg
for a low speed test; V = 2.5 m/s
bumper maximum deflection = 4 cm = 0.04 m
First we determine the energy of the vehicle just prior to impact;
W_v = 1/2mv²
we substitute
W_v = 1/2 × 1000 × (2.5)²
W_v = 3125 J
now, the the effective design stiffness k will be:
at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;
hence;
W_v = 1/2kx²
we substitute
3125 = 1/2 × k (0.04)²
3125 = 0.0008k
k = 3125 / 0.0008
k = 3906250 N/m
Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m