gravitational potential is directly proportional to the height of the object relative to a reference line and is given as
PE = mgh
where m = mass of object , g = acceleration due to
gravity and h = height of the object above the reference line .
as the skydiver falls , its height above the ground decrease and hence the gravitational potential energy of the skydiver decrease.
as per conservation of energy , total energy of the skydiver must remain constant all the time . hence the decrease in potential energy appears as increase in kinetic energy by same amount to keep the total energy constant
KE + PE = Total energy
so as the skydiver falls , it gains speed and hence the kinetic energy of skydiver increase since kinetic energy is directly proportional to the square of the speed.
when the parachute opens, the skydiver experience force in upward which tries to balance the weight of the skydiver. hence the speed of the skydiver decrease until upward force becomes equal to the downward force. hence the kinetic energy decrease just after the parachute opens
A gentle slope requires less force over a longer distance as compared to steep slope.
Explanation:
Mechanical advantage of a slope is equal to the ratio of length of slope and the height. A steep slope has shorter length as compared to a gentle slope for the same height. Therefore, mechanical advantage of a gentle slope is more than that of a steep slope. Hence, a gentle slope requires less force over a long distance than a steep slope.
Answer:
The correct answer will be "
". The further explanation is given below.
Explanation:
The potential energy will be,
⇒ 
The expression of force will be,
⇒ 
⇒ 
⇒ 
Force seems to be appealing because the expression has been negative. It therefore means that the force or substance is acting laterally in on itself.
Explanation:
We know that that the range of the ball on the earth

therefore, range of the ball on moon


therefore,

Therefore, the range of ball will be 6 times on the moon than that on earth