Answer:
D=387.28m
Explanation:
At the moment where the toss is made
, so we need both equations:
For the red car:
With initial speed of 0 and acceleration of 6.12m/s^2.
For the green car:
With
and Xo = 200m
Since both positions will be the same:
Solving for t:
t1 = -5.8s and t1 =11.25s
Replacing t = 11.25 on either equation to find the displacement:

Answer:
HSBC keen vs kg get it yyyyyuuy
Explanation:
hgccccxfcffgbbbbbbbbbbghhyhhhgdghcjyddhhyfdghhhfdgbxbbndgnncvbhcxgnjffccggshgdggjhddh
nnnbvvvvvggfxrugdfutdfjhyfggigftffghhjjhhjyhrdffddfvvvvvvvvvvvbbbbbbbbbvvcxccghhyhhhjjjhjnnnnnnnnnnnnnbhbfgjgfhhccccccvvjjfdbngxvncnccbnxcvbchvxxghfdgvvhhihbvhbbhhvxcgbbbcxzxvbjhcxvvbnnxvnn
Answer:
A case is an experimental unit. ... Another synonym is experimental unit. A variable is a characteristic that is measured and can take on different values. In other words, something that varies between cases.
Explanation:
m = mass of the roller coaster = 500 kg
h = height of the hill = 80 m
v = speed of the roller coaster at the bottom of the hill = ?
using conservation of energy
kinetic energy at the bottom of the hill = potential energy at the top of hill
(0.5) m v² = m g h
(0.5) v² = g h
inserting the values
(0.5) v² = (9.8) (80)
v = 39.6 m/s
hence the speed at the bottom comes out to be 39.6 m/s
Answer:
E= 71dB
Explanation:
See attached file for step by step calculation