Because upward buoyant force is slightly higher than gravitation force for this particular object
Answer:
The object would weight 63 N on the Earth surface
Explanation:
We can use the general expression for the gravitational force between two objects to solve this problem, considering that in both cases, the mass of the Earth is the same. Notice as well that we know the gravitational force (weight) of the object at 3200 km from the Earth surface, which is (3200 + 6400 = 9600 km) from the center of the Earth:

Now, if the body is on the surface of the Earth, its weight (w) would be:

Now we can divide term by term the two equations above, to cancel out common factors and end up with a simple proportion:

Answer:
<em>Sonogram </em><em>is </em><em>a </em><em>medical </em><em>image </em><em>produced </em><em>by </em><em>ultrasound </em><em>echo. </em>
<em>It </em><em>is </em><em>used </em><em>to </em><em>help</em><em> </em><em>diagnose </em><em>causes </em><em>of </em><em>pain </em><em>and </em><em>swelling</em><em>. </em>
Answer:
2.815 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


Time taken with the acceleration is 94.25 seconds
Time = Distance / Speed

Difference in time = 97.065-94.25 = 2.815 seconds
In #8, the distance and the (magnitude of displacement) are equal, because he crawled in a straight line.
Displacement = (straight-line distance from start-point to end-point) in the direction from start to end, regardless of what route was actually followed.
Displacement = 5m, in the negative direction.
In #9 . . . distance will be the same. Displacement is going to be the same magnitude, but in the positive direction.
This is so simple that it's hard to talk about.
In #8, "What was the bug's distance ?". "Distance was 5 meters.". "What was the bug's displacement ?", "Displacement was 5 meters backwards."
In #9, What was the bug's distance ?". "Distance was 5 meters.". "What was the bug's displacement ?", "Displacement was 5 meters forward."