1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
insens350 [35]
3 years ago
7

Abigail was skateboarding home when the wheel axle of her skateboard broke. She had already traveled two thirds of the way home

and had to walk the rest of the way. Walking the rest of the way home took her twice as long as it took her to ride her skateboard. How many times faster is Abigail on her skateboard than she is walking?HELP ASAP
Mathematics
1 answer:
OverLord2011 [107]3 years ago
4 0

Answer:

I think that her taking the skateboard is 4 times as fast as her walking.

Step-by-step explanation:

I got this because she traveled twice as long and twice as fast on the skateboard, so if you multiply it together, there u have it.

You might be interested in
Solve the system of equations.<br><br><br><br> −2x+5y =−35<br> 7x+2y =25
Otrada [13]

Answer:

The equations have one solution at (5, -5).

Step-by-step explanation:

We are given a system of equations:

\displaystyle{\left \{ {{-2x+5y=-35} \atop {7x+2y=25}} \right.}

This system of equations can be solved in three different ways:

  1. Graphing the equations (method used)
  2. Substituting values into the equations
  3. Eliminating variables from the equations

<u>Graphing the Equations</u>

We need to solve each equation and place it in slope-intercept form first. Slope-intercept form is \text{y = mx + b}.

Equation 1 is -2x+5y = -35. We need to isolate y.

\displaystyle{-2x + 5y = -35}\\\\5y = 2x - 35\\\\\frac{5y}{5} = \frac{2x - 35}{5}\\\\y = \frac{2}{5}x - 7

Equation 1 is now y=\frac{2}{5}x-7.

Equation 2 also needs y to be isolated.

\displaystyle{7x+2y=25}\\\\2y=-7x+25\\\\\frac{2y}{2}=\frac{-7x+25}{2}\\\\y = -\frac{7}{2}x + \frac{25}{2}

Equation 2 is now y=-\frac{7}{2}x+\frac{25}{2}.

Now, we can graph both of these using a data table and plotting points on the graph. If the two lines intersect at a point, this is a solution for the system of equations.

The table below has unsolved y-values - we need to insert the value of x and solve for y and input these values in the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & a \\ \cline{1-2} 1 & b \\ \cline{1-2} 2 & c \\ \cline{1-2} 3 & d \\ \cline{1-2} 4 & e \\ \cline{1-2} 5 & f \\ \cline{1-2} \end{array}

\bullet \ \text{For x = 0,}

\displaystyle{y = \frac{2}{5}(0) - 7}\\\\y = 0 - 7\\\\y = -7

\bullet \ \text{For x = 1,}

\displaystyle{y=\frac{2}{5}(1)-7}\\\\y=\frac{2}{5}-7\\\\y = -\frac{33}{5}

\bullet \ \text{For x = 2,}

\displaystyle{y=\frac{2}{5}(2)-7}\\\\y = \frac{4}{5}-7\\\\y = -\frac{31}{5}

\bullet \ \text{For x = 3,}

\displaystyle{y=\frac{2}{5}(3)-7}\\\\y= \frac{6}{5}-7\\\\y=-\frac{29}{5}

\bullet \ \text{For x = 4,}

\displaystyle{y=\frac{2}{5}(4)-7}\\\\y = \frac{8}{5}-7\\\\y=-\frac{27}{5}

\bullet \ \text{For x = 5,}

\displaystyle{y=\frac{2}{5}(5)-7}\\\\y=2-7\\\\y=-5

Now, we can place these values in our table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

As we can see in our table, the rate of decrease is -\frac{2}{5}. In case we need to determine more values, we can easily either replace x with a new value in the equation or just subtract -\frac{2}{5} from the previous value.

For Equation 2, we need to use the same process. Equation 2 has been resolved to be y=-\frac{7}{2}x+\frac{25}{2}. Therefore, we just use the same process as before to solve for the values.

\bullet \ \text{For x = 0,}

\displaystyle{y=-\frac{7}{2}(0)+\frac{25}{2}}\\\\y = 0 + \frac{25}{2}\\\\y = \frac{25}{2}

\bullet \ \text{For x = 1,}

\displaystyle{y=-\frac{7}{2}(1)+\frac{25}{2}}\\\\y = -\frac{7}{2} + \frac{25}{2}\\\\y = 9

\bullet \ \text{For x = 2,}

\displaystyle{y=-\frac{7}{2}(2)+\frac{25}{2}}\\\\y = -7+\frac{25}{2}\\\\y = \frac{11}{2}

\bullet \ \text{For x = 3,}

\displaystyle{y=-\frac{7}{2}(3)+\frac{25}{2}}\\\\y = -\frac{21}{2}+\frac{25}{2}\\\\y = 2

\bullet \ \text{For x = 4,}

\displaystyle{y=-\frac{7}{2}(4)+\frac{25}{2}}\\\\y=-14+\frac{25}{2}\\\\y = -\frac{3}{2}

\bullet \ \text{For x = 5,}

\displaystyle{y=-\frac{7}{2}(5)+\frac{25}{2}}\\\\y = -\frac{35}{2}+\frac{25}{2}\\\\y = -5

And now, we place these values into the table.

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

When we compare our two tables, we can see that we have one similarity - the points are the same at x = 5.

Equation 1                  Equation 2

\begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & -7 \\ \cline{1-2} 1 & -33/5 \\ \cline{1-2} 2 & -31/5 \\ \cline{1-2} 3 & -29/5 \\ \cline{1-2} 4 & -27/5 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}                 \begin{array}{|c|c|} \cline{1-2} \textbf{x} & \textbf{y} \\ \cline{1-2} 0 & 25/2 \\ \cline{1-2} 1 & 9 \\ \cline{1-2} 2 & 11/2 \\ \cline{1-2} 3 & 2 \\ \cline{1-2} 4 & -3/2 \\ \cline{1-2} 5 & -5 \\ \cline{1-2} \end{array}

Therefore, using this data, we have one solution at (5, -5).

4 0
3 years ago
HELPPPPPPPPPP!!!!!!!!!!
juin [17]

Answer:

The last one

Step-by-step explanation:

measure angle 2 and 6 to see if congruent

4 0
3 years ago
What is 21/2 as a mixed number?
Daniel [21]
Since a fraction is a form of division, you do 21/2=10 and 1/2.
3 0
3 years ago
Read 2 more answers
PLEASE HELP!!!!!!!!!!!!1
skelet666 [1.2K]
A. Let x = cheese and
y = chocolate
2x + y = 25
x + y = 20

B. Subtract the second equation from the first.
2x + y = 25
-(x + y = 20)
-—————
x = 5

Plug 5 back in to the second equation and solve for y.
x + y = 20
5 + y = 20
Subtract 5 from both sides.
y = 15
5 cheese and 15 chocolate

Used elimination method because coefficients on the y values were both 1 so it was easy to subtract the equations and eliminate the y variable.


5 0
3 years ago
Which of the following points is a vertex for the image produced by a dilation about the origin with a scale factor of 1/2?
MA_775_DIABLO [31]

Answer:

A (0,3)

Step-by-step explanation:

The given trapezoid has vertices:

(0,6), (7,12), (7,9) and (0,12).

We want to choose from the given options, a point that is a vertex for the image produced by a dilation about the origin with a scale factor of 1/2.

Note that the mapping for such a dilation is:

(x,y)\to( \frac{1}{2} x, \frac{1}{2} y)

This implies that:

(0,6)\to(0,3)

(7,12)\to(3.5,6)

(7,9)\to(3.5,4.5)

(0,12)\to(0,6)

Therefore correct choice is (0,3)

8 0
3 years ago
Other questions:
  • Whats the reason for 8x-5-2x=2x+1-2x
    12·1 answer
  • Express 6/25 as a decimal fracture​
    15·2 answers
  • Find the remaining side of a 45° – 45° – 90° triangle if the shorter sides are 2/3 each .
    13·1 answer
  • Can anyone solve this problem please help me
    15·1 answer
  • What is the sum of 12x^2+3x+6 and -7x^2-4x-2
    10·1 answer
  • What figure is shown in the drawing ? JH , JK , EJ , EK
    10·1 answer
  • Expressions that are equivalent to the polynomial (3x -7)(2x +8)
    11·1 answer
  • Solve x2 + 12x + 25 = 17 by completing the square. Select all the possible solutions.
    10·1 answer
  • i was arguing with this guy in dahood yesterday and he said "i f'd ur dog to death how that make u feel".​
    9·1 answer
  • A doctor orders 120 milligrams of medication to be given to a patient. If 0.5 milliliters of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!