Answer:
no identity will escape! I know where you live
Let ‘s’ be the son’s age 12 years ago.
Let ‘f’ be the father’s current age.
4 years ago, the son was:
s-4
So, his father is currently:
3(s-4)
=
3s-12
Therefore:
f = 3s-12
In twelve years, the son will be:
s+12
And the father will be:
f+12
This can also be written as:
3s-12+12 as the fathers younger age would be f = 3s+12
=
3s
So, we know that s+12 is half the fathers current age, meaning the father is currently 2(s+12) which is equivalent to 2s+24. Also, we know that the father is currently 3 times the sons age 12 years ago, so 3s (proven by the calculations we made above). Therefore, 2s+24=3s which means 24=s. We can then substitute this, and we will receive 24+12 = 36
Son’s current age: 36
We then substitute the son’s age 12 years ago into 2s+24 to give us the father’s age.
2(24)+24 = 72
Father’s current age: 72
To move the function to the left you have to increase x inside the function
think of it like g(x)=f(x+7)
the solution is
y=(x+7)^2
Answer:
466 + 68
Step-by-step explanation:
We can easily check a subtraction problem with an addition problem.
Calculate the sum of the subtracted and the difference. If the sum is equal to the minuend in the original subtraction problem, the answer is correct.
Minuend - Subtrahend = Difference
466 + 68 = 534
The statement '534 – 68 = 466' is correct.
Hope this helps.