Answer:
Q14: 17,140 g = 17.14 kg.
Q16: 504 J.
Explanation:
<u><em>Q14:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = 3600 x 10³ J).
m is the mass of the ice (m = ??? g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 100.0°C - 0.0°C = 100.0°C).
∵ Q = m.c.ΔT
∴ (3600 x 10³ J) = m.(2.1 J/g.°C).(100.0°C)
∴ m = (3600 x 10³ J)/(2.1 J/g.°C).(100.0°C) = 17,140 g = 17.14 kg.
<u><em>Q16:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 12.0 g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 0.0°C - (-20.0°C) = 20.0°C).
∴ Q = m.c.ΔT = (12.0 g)(2.1 J/g.°C)(20.0°C) = 504 J.
Answer:
46.3g H2O
Explanation:
start by balancing it: CaC2(s) + 2H2O(g) -> Ca(OH)2(s) + C2H2(g)
then use factor label method to solve
82.4g CaC2 x (1 mol CaC2/64.10g CaC2) x (2 mol H2O/1 mol CaC2) x (18.016g H2O/1 mol H20) = 46.3g H2O
Answer:
combustion is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke.
Answer:
The Sandmeyer reaction is a chemical reaction used to synthesize aryl halides from aryl diazonium salts using copper salts as reagents or catalysts. It is an example of a radical-nucleophilic aromatic substitution.
Sulfur dioxide is an example of air pollution.
It is the main component of acid rain. It is released into the air as a result of the burning of fossil fuels.