1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inessss [21]
3 years ago
5

Which values are solutions to the inequality below? check all that apply.

Mathematics
1 answer:
gayaneshka [121]3 years ago
7 0
The answer is A and D because if you square both of them, they are less than 16. hope this helps!
You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
What is the solution to the system?<br> X+3y = 5<br> 5x-3y = 7
S_A_V [24]

Answer:

x + 3y = 5

5x - 3y = 7

Add up both equations, then:

6x = 12

=> x = 2

=> y = (5 - 2)/3 = 1

5 0
3 years ago
Read 2 more answers
you are rolling a 10-sided die with sides numbered 1-10. you keep rolling the die until you roll a prime number and then stop. l
evablogger [386]

The formula for E(x) would be SUM[ X(n)P(n)] from n = 1 to n = infinity until we get the prime number

In the given problem, a 10-sided die with 1-10 numbers is rolled until we get a prime number

Prime numbers between 1-10 = 2,3,5,7 (4 prime numbers)

Non - prime numbers = 1,4,6,8,9,10( 6 non-prime number)

Let X be the number of times the die is rolled

The probability of getting a prime =

P(Prime) = \frac{4}{10}

Now, the value of

E(X)=∑x.P(x) [ x-> {1, infinity}]

= P(1)X(1) +P(2)X(2)+P(3)X(3)+P(4)X(4)........+ P(n)X(n)

= 1.\frac{4}{10} + 2. \frac{6}{10}.\frac{4}{10} + 3.\frac{6}{10}.\frac{6}{10}\frac{4}{10} + 4. \frac{6}{10}.\frac{6}{10}.\frac{6}{10}.\frac{4}{10}.......

Hence, this is the value of E(x)

To learn more about Prime number, here

brainly.com/question/9315685

#SPJ4

4 0
2 years ago
Danielle needs to walk 2.5 miles. If she wants to reach her destination in 30 minutes (1/2hour), how fast does she need to walk?
shepuryov [24]
5 mph to get that answer you use the speed equation
speed(mph)=distance(in miles)/time(in hours)
2.5
------ = 5 mph
.5
3 0
3 years ago
Which equation has the solution x = 5?
alexgriva [62]
It would be 32-4x=12
32-4(5)=12
32-20=12
12=12
4 0
3 years ago
Read 2 more answers
Other questions:
  • Find the value of the each value in the parallelagram
    9·1 answer
  • Is 100in more than 3yd 1 ft
    15·2 answers
  • The owner of a health club decides to reduce the $35 membership fee by $5. What is the approximate percent
    14·1 answer
  • State the explicit form of the pattern: 4, 9, 14, 19, …
    13·2 answers
  • How much more would you earn in the first investment than in the second investment? $22,000 invested for 40 years at 14% compoun
    11·1 answer
  • Brian earns $11 per hour how many hours will Brian have to work until your earns $143? Plssss help me​
    9·1 answer
  • Bianca is planting trees along her driveway, and she has 55 sycamores and 55 palm trees to plant in one row. What is the probabi
    7·1 answer
  • Leo has an allowance of $80 from doing chores. He puts $22 into his
    5·2 answers
  • Please help (geometry) number 11
    8·2 answers
  • Three years ago, Jolene bought $525 worth of stock in a software company. Since then the value of her purchase has been increasi
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!