Answer:
ΔHr = -103,4 kcal/mol
Explanation:
<u>Using:</u>
<u>AH° (kcal/mol)
</u>
<u>Metano (CH)
</u>
<u>-17,9
</u>
<u>Cloro (CI)
</u>
<u>tetraclorometano (CCI)
</u>
<u>- 33,3
</u>
<u>Acido cloridrico (HCI)
</u>
<u>-22</u>
It is possible to obtain the ΔH of a reaction from ΔH's of formation for each compound, thus:
ΔHr = (ΔH products - ΔH reactants)
For the reaction:
CH₄(g) + Cl₂(g) → CCl₄(g) + HCl(g)
The balanced reaction is:
CH₄(g) + 4Cl₂(g) → CCl₄(g) + 4HCl(g)
The ΔH's of formation for these compounds are:
ΔH CH₄(g): -17,9 kcal/mol
ΔH Cl₂(g): 0 kcal/mol
ΔH CCl₄(g): -33,3 kcal/mol
ΔH HCl(g): -22 kcal/mol
The ΔHr is:
-33,3 kcal/mol × 1 mol + -22 kcal/mol× 4 mol - (-17,9 kcal/mol × 1 mol + 0kcal/mol × 4mol)
<em>ΔHr = -103,4 kcal/mol</em>
<em></em>
I hope it helps!
<span>Answer is: Van't Hoff factor
(i) for this solution is 1.051 .
Change in boiling point from pure solvent to solution: ΔT
=i · Kb · b.
Kb - </span><span>molal boiling point elevation constant</span><span> is 0.512°C/m.
b - molality, moles of solute per kilogram of solvent.
b = 1.26 m.
ΔT = 101.63°C - 100</span>°C = 1.63°C.
i = 1.63°C ÷ (0.512°C/m · 1.26 m).
i = 1.051.
Answer:
I think the answer is All of these answers are correct.
I believe the answer is D
Answer:
(a)57.48 percent (b) 29.45 percent
Explanation:
copper(II) bromide is 29.45 percent copper and 71.54 percent bromine. so the first element percentage composition is always the percentage composition of the compound.
that goes same with sodium hydroxide. it is 57.48 percent sodium, 40 percent oxygen, and 2.52 percent hydrogen.