Answer:
C
Explanation:
Perfume needs to evaporate in order to smell. If this perfume didn't evaporate, it would stay as a liquid and never smell.
It wouldn't be D, as no toxic perfumes is sold.
It's not A because perfume doesn't have to be pressurized in order to not evaporate.
It's not B, as it is a hasty conclusion to the claim. Plus, if the perfume did have an odor, even while not evaporating, the sales would be low as the product is that good.
The <u>Mole</u> is the SI unit that expresses the amount of substance.
Mole is defined as - The mole is the amount of substance containing the same number of entities as there are in the 12 grams of Carbon - 12.
Mole is denoted by using symbol mol.
Mole = 6.022 x 10²³ elementary entities.
These number of elementary entities in 1 mole is equal to or called as an Avogadro's number. Mole is equal to 6.022 x 10²³ because this number of entity is same as in exactly 12 g of carbon-12.
It is a very important SI unit of measured which is used by the chemists. Moles are used in measuring in small or tiny things such as atoms, molecules and the other tiny particles.
To learn more about the mole concept,
brainly.com/question/28498715
#SPJ4
Answer:
0.052mL
Explanation:
1mole of a gas occupy 22.4L.
Therefore, 1 mole of CO2 will also occupy 22.4L.
If 1mole of CO2 occupies 22.4L,
Then 2.3moles of CO2 will occupy = 2.3 x 22.4 = 51.52L
coverting this volume to mL, we simply divide by 1000 as shown below:
51.52/1000 = 0.05152mL = 0.052mL
A. true
b. false
c. true
d. false
e. false
Answer:
Explanation:
Electron affinity is the energy released in adding an electron to a neutral atom in the gas phase.
It is a measure of the readiness of an atom to gain an electron. This property is very peculiar to non-metals. The higher the value, the greater the tendency to accept electrons.
Across a period electron affinity increases due to the increasing nuclear charge not being compensated for.
Down a group, electron affinity decreases due to the low nuclear charge and the large atomic radii.
The exception to this rule is the stability of half-filled sublevels. For example, nitrogen has a configuration of 2,5 with sublevel notation of 1s²2s²2p³.
The p-sublevel has a degeneracy of three and the three electrons goes in singly. This makes the configuration stable.
We expect such an atom to have a higher electron affinity but its configuration is stable and carbon would have a higher affinity than it across the same period.
Half filled sublevels are exception to the trend of electron affinity.