This is possible because of the emulsifying properties present in soap. This property is caused by the hydrophilic end and hydrophobic end of a soap molecule. Grease is able to be dissolved in the water because it is attracted to the hydrophobic end of the soap molecule.
Answer : The mass of oxygen formed must be 3.8 grams.
Explanation :
Law of conservation of mass : It states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical reaction will be,

According to the law of conservation of mass,
Total mass of reactant side = Total mass of product side
Total mass of
= Total mass of 
As we are given :
The mass of
= 25.3 grams
The mass of
= 23.4 grams
So,



Therefore, the mass of oxygen formed must be 3.8 grams.
<span>Step 1 is to determine the mass of each part
Mass of Ca is 40.08 g
Mass of C is 12.01 g
Mass of O is 16.00 x 3 = 48.00 g
Step 2 is to determine the total mass of the compound
Total mass of CaCO3 is 40.08 + 12.01 + 48.00 = 100.09 g
Step 3 is to determine the % of each part using the following formula:
Mass of part / total mass x 100 =
40.08 / 100.09 x 100 = 40.04 % Ca
12.01 / 100.09 x 100 = 12.00 % C
48.00 / 100.09 x 100 = 47.96 % O
Step 4 is to double check by adding all percentages. If they equal 100, then I probably did it right. :)
40.04
+12.00
+47.96
=100.00</span><span>
</span>
There are a total of 4 elements
Answer: 15062.4 Joules
Explanation:
The quantity of heat energy (Q) required to heat a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = ?
Mass of food = 200.0g
C = 4.184 j/g°C
Φ = (Final temperature - Initial temperature)
= 83.0°C - 65.0°C = 18°C
Then, Q = MCΦ
Q = 200.0g x 4.184 j/g°C x 18°C
Q = 15062.4 J
Thus, 15062.4 joules of heat energy was contained in the food.